A unifying framework for spectrum-preserving graph sparsification and coarsening

15-second summary The deletion of edges (sparsification) and the merging of adjacent vertices (coarsening) are two common methods for reducing a graph.
We analytically unify these two operations using a single objective function based on the graph Laplacian pseudoinverse,
providing a principled algorithm that simultaneously sparsifies and coarsens a graph while preserving its large-scale structure.

Two paradigms for graph reduction The duality of deletion and contraction Why the Laplacian pseudoinverse? A unifying graph reduction functional

Sparsification Geometrically

deleting edges and reweighting the rest edge deletion in a planar graph
\ NN corresponds to edge contraction in its planar dual
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mergmg nodes often by edge contraction

Physically
electrical analogue

These are cu rrently treated as edge weight = conductance deletion
separate algorithmic primitives
Algebraically
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Our graph reduction algorithm
1) Sample a random 2) Choose 3 such that some 3) Delete, contract, or reweight 4) Repeat until desired
independent edge set  fraction are acted upon using single-edge analysis level of reduction

generalizes to nonplanar graphs (matroid duality)
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The Laplacian paradigm
quadratic form
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interpolation on graphs

minimize Q

spectral clustering and
low-dimensional embedding
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first eigenvector

The Laplacian pseudoinverse
many applications require solving

[x=b = x=1L
A
inverted spectrum —
increases sensitivity  £3|-=
to global structure & |
) L

More accurate preservation of large-scale structure
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fraction of edges remaining
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We minimize the expectation of the cost function
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reduction in number of edges
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error in pseudoinverse

subject to the constramt that the result is unbiased

_reduced

~ =original

Three regimes for

global

contraction probability
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Coarsening
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Finite element mesh

normalized error in LJr

fraction of nodes remaining



