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Abstract

This dissertation investigates the extent to which features of the solar interior can be

described by magnetohydrodynamic equilibria. Essentially, we solve the generalized

Grad–Shafranov equation, with observational constraints serving as (incomplete) boundary

conditions, thereby offering a family of plausible internal solar profiles.

Numerical simulations can offer insight into the interior dynamics and help identify

which ingredients are necessary to reproduce particular observations. However, they are

computationally intensive; fully resolved simulations of the solar interior will likely remain

hypothetical for several solar cycles. Fortunately, despite being rife with turbulence, many

features of the Sun can be understood analytically from an equilibrium perspective (e.g.,

Parkers laminar model of the supersonic solar wind).

To help identify which features admit an equilibrium description, we analyze station-

ary axisymmetric ideal magnetohydrodynamic flows for solar-relevant parameters. Our

numerical scheme for obtaining global solutions uses the Lagrangian formulation of the re-

sulting generalized Grad–Shafranov equation, employing a novel method for incorporating

unconstrained boundary conditions (Chapter 3).

Beginning with the outer layers of the Sun, we show that the hydrodynamic limit

is sufficient to describe the observed deviation from the cylindrical rotation in the solar

Convection Zone (Chapter 4). Moreover, the inclusion of a poloidal flow results in a slowing

of rotation at the surface, qualitatively similar to the Near Surface Shear Layer (Chapter 5).

Turning inward, we then investigate the effects of including a magnetic field, and its

relationship to the Tachocline and the Radiative Interior (Chapter 6). The presence of both

a poloidal field and poloidal flow can result in the equilibrium equations transitioning to

hyperbolic type, and could lead to discontinuities or steep gradients characteristic of the

Tachocline. While observations at the solar surface indicate that these transitions occur
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suggestively close to the Tachocline, we find that there exist solutions that remain smooth

throughout, though they might not be robust to perturbations.

Coupled with the increasing sensitivity of extraterrestrial seismic and magnetic measure-

ments, our framework could offer plausible extrapolations into the hidden interiors of other

astrophysical objects, helping to determine which features have an equilibrium description,

and which are necessarily dynamical in origin.
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Chapter 1

Physics of the Solar Interior:

A Historical Overview

You do not beg the Sun for mercy.

—– Frank Herbert, Dune Messiah

1.1 A Copernican Corollary

The Sun is a rather unremarkable G-type star. However, indulging an anthropocentric

viewpoint, the Sun is in the unique position of being orders of magnitude closer to the

Earth than any other star, a fact of epistemological relevance. Indeed, over the course of its

close relationship with humanity, we have come to discover many surprising aspects of its

personality.
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1.2 The pedagogical value of sunspots

Far from being an immaculate sphere of the heavens, the Sun is close enough to reveal its

imperfections. Sunspots have been observed since antiquity, the earliest known record being

from the Chinese Book of Changes, c 800 BCE1 [108]. The earliest known drawing appears

much later, in 1128, by John of Worchester [102] (see Figure 1.1 for his artistic abilities).
D. M. Willis and F. R. Stephenson: A recurrent geomagnetic storm in December AD 1128 291

Fig. 1. The earliest known drawing of sunspots, which appears in The Chronicle of John of Worcester (Darlington et al., 1995; McGurk,
1998). This drawing shows the apparent positions and sizes of two sunspots that were observed on AD 1128 December 8 from Worcester,
England. Part of the surrounding Latin text describes the two sunspots and also presents historical information that enables this medieval
sunspot observation to be precisely dated. A translation of the relevant part of the Latin text is presented in Sect. 2.

Chinese and North Chinese observations of the sunspot on
AD 1129 March 22 were independent. Around this time,
the Jurchen tribes from Manchuria, who had established the
Chin dynasty in AD 1115, overran the northern half of the
Sung empire. They captured its capital Pien (modern name
Kaifeng) in January of AD 1127 and the emperor was taken
into exile. The Sung court fled south and the dynasty never
regained its lost territory. A new Sung emperor was en-
throned at Ying-t’ien (close to the modern city of Shangqiu)
in June of that year.

The two sunspot records (Sung-shih, 25, 52) from China
proper (capital: Hang-chou, later named Lin-an, the modern

city of Hangzhou) and the single record (Chin-shih, 20) from
North China (principal capital: Shang-ching in Inner Mongo-
lia, the modern city of Acheng) state that “there was a black
spot within the Sun” on AD 1129 March 22. Both the “An-
nals” (Sung-shih, 25) and the “Astronomical Treatise” (Sung-
shih, 52) from China proper state further that “the black spot
within the Sun died away” on AD 1129 April 14. Moreover,
neither of these Chinese histories mentions sunspot sightings
on any other day in the interval between March 22 and April
14. Since the same sunspot cannot have been seen contin-
uously for 24 days, these particular Chinese records imply
that more than one large sunspot (or dense sunspot group)

Figure 1.1: Earliest known drawing of sunspots, by John of Worchester in AD 1128,
December 8. About five days later, associated geomagnetic storms were seen in regions
remarkably far from the poles, with multiple Korean and Chinese written records (image
taken from [102]).

With the aid of telescopes and systematic observations, in the early 15th century, Gior-

dano Bruno and Johannes Kepler posited that the spots were not orbiting objects, and were

in fact surface features. Furthermore, they suggested that the systematic movement of these

spots from west to east indicated that the Sun rotates about its axis. Thereafter, there were

many attempts to use sunspots to infer the rotation rate of the Sun, arriving at reasonable

estimates on the order of a month. However, the variations in these results were not particu-

1The author agrees with the sentiment of the footnote on page xv of [20], viz, omitting superfluous full
stops to obtain a more efficient compression of, eg: videlicet, exempli gratia, etc.
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larly well-understood. It was not until the middle of the 19th century that these blemishes

were noticed to come in cycles [87] (Figure 1.2a), and move faster near the equator [17]

(Figure 1.2b).

The Solar Cycle 9

2 The Solar Cycle Discovered

Sunspots (dark patches on the Sun where intense magnetic fields loop up through the surface from
the deep interior) were almost certainly seen by prehistoric humans viewing the Sun through hazy
skies. The earliest actual recordings of sunspot observations were from China over 2000 years ago
(Clark and Stephenson, 1978; Wittmann and Xu, 1987). Yet, the existence of spots on the Sun
came as a surprise to westerners when telescopes were first used to observe the Sun in the early
17th century. This is usually attributed to western philosophy in which the heavens and the Sun
were thought to be perfect and unblemished (see Bray and Loughhead, 1965; Noyes, 1982).

The first mention of possible periodic behavior in sunspots came from Christian Horrebow, who
wrote in his 1776 diary:

Even though our observations conclude that changes of sunspots must be periodic, a
precise order of regulation and appearance cannot be found in the years in which it
was observed. That is because astronomers have not been making the e↵ort to make
observations of the subject of sunspots on a regular basis. Without a doubt, they
believed that these observations were not of interest for either astronomy or physics.
One can only hope that, with frequent observations of periodic motion of space objects,
that time will show how to examine in which way astronomical bodies that are driven
and lit up by the Sun are influenced by sunspots. (Wolf, 1877a, translation by Elke
Willenberg)

2.1 Schwabe’s discovery

Although Christian Horrebow mentions this possible periodic variation in 1776 the solar (sunspot)
cycle was not truly discovered until 1844. In that year Heinrich Schwabe reported in Astronomische
Nachrichten (Schwabe, 1844) that his observations of the numbers of sunspot groups and spotless
days over the previous 18 years indicated the presence of a cycle of activity with a period of about
10 years. Figure 1 shows his data for the number of sunspot groups observed yearly from 1826 to
1843.

1825 1830 1835 1840 1845
Date

0

100

200

300

400

S
u

n
s
p

o
t 

G
ro

u
p

s

Figure 1: Sunspot groups observed each year from 1826 to 1843 by Heinrich Schwabe (1844). These data
led Schwabe to his discovery of the sunspot cycle.
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Mr. Carrington^ on the Motions of Solar Spots. 83 

positions of neat single spots, favourably observed, in order to 
show in the briefest way, and at the same time conclusively, 
that no single value of the time of rotation of the photosphere 
will satisfy the successive observed longitudes of normal spots, 
and that the outstanding movements are such as are only 
referable to proper motion of the nature of drift of the entire 
spot. The period of sidereal rotation with which the reductions 
have been effected is 25’380 mean solar days; and it will be 
seen that while spots (6) and (7) move to the left, or increase 
their longitude from the adopted fixed meridian, spots (8), (9), 
and (10), move to the right, their longitudes decreasing, and 
that these motions are of an amount which necessitates the 
supposition of bodily drift. It were easy to add the numerical 
positions of these five series, but I do not see that figures would 
here add anything to the force of the ocular demonstration. 

I have proceeded to select out of my stock of results all 
series of observed positions of single spots recorded on more 
than two days, to which no a priori objection existed, and to 
deduce for each series the mean daily drift of the spot in longi- 
tude and latitude, expressed in minutes of arc on the surface of 
the sun, and arranged the results in order of the latitude of the 
spots from north to south. As I do not consider the subject 
fully ripe, I will only now give the mean results of contiguous 
values, remarking that the groups have been made as usual 
wdth reference to the tendency exhibited to change of sign, and 
that the signs within the limits of the several groups presented 
a remarkable consistency. The resulting means are as follow;— 

Latitude. Daily Drift, 
o / 

30 N *— 25 in longitude 
18 N — 14 

8 N +8 
ii S +10 .* 
19 S —10 
29 S — 21 

5 in latitude} by 4 series 
+ i 
~ 5 
- 3 
+ i 
-r 4 

4 
14 
6 
5 
8 

There is a mean excess of rétrogradation in longitude of f 
a day with the period 25*380, which was employed provision- 
ally in reduction, If we correct this' period for the 9', we have 
140 2' for the daily sidereal rotation, and for the corre- 
sponding period ; but though this is the mean period which 
results, and happens to agree exactly with the mean period of 
Dr. C. H. F. Peters, it necessarily is affected by the mean drift, 
and may be not a whit nearer the truth than the one provision- 
ally used, from the convenience of its ready subdivision. The 
numbers exhibited in the foregoing little table are however very 
significant, when the method of their derivation is duly borne in 
mind. They show that with a mean period of rotation there is 
an ecpiatoreal current causing spots to move in the direction of 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 1.2: The first systematic studies of sunspots led to the discovery of the solar
cycle and latitudinal differential rotation. a) Data collected by Schwabe, which led to
the discovery of the solar cycle [87] (image taken from [51]). b) Summary of data from
Carrington’s studies of sunspot velocity as a function of latitude, which led to the discovery
that the equator rotates faster than the poles [17].

1.3 The Doppler discrepancy

Tracking sunspots only gets one so far, and the advent of doppler measurements provided

a more direct method for observing our Dizzy Deity. Around the end of the 19th century,

measurements of the solar surface velocity confirmed that the surface of the Sun exhibits the

same differential rotation, albeit notably slower [23]. As doppler measurements improved, it

became definitively clear that sunspots were consistently rotating faster than the surrounding

photosphere [101]. During this time, sunspots also received the first astrophysical application

of the Zeeman effect, when Hale presented evidence of their magnetic origin [47]. The
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suggestion that these magnetic features were anchored to more rapidly rotating subsurface

layers marked one of the first (correct) inferences about the interior rotation of the Sun [30].

1.4 Helioseismology

By the middle of the 20th century, it was clear that radiative diffusion was insufficient to

transport the energy from the fusing core to the surface, and that the outer layers of the Sun

were convectively unstable [106]. Much in the same way that details about the terrestrial

interior are inferred by observing how earthquakes bounce off the inside of the Earth [91],

the dynamics of such convection-induced “sunquakes” were suggested as a way to indirectly

probe the solar interior [38].

Fortunately, the Sun is effectively “quaking” all the time; supersonic convection at

the solar surface generates sound waves, which then propagate throughout the interior,

setting up global standing modes. Through high-resolution Doppler measurements of the

resulting motion of the solar surface, it is possible to resolve hundreds of thousands of unique

frequencies at which the Sun resonates. These different frequencies are associated with

different eigenfunctions, which sample different spatial regions of the Sun. The challenge

(taken up by helioseismology) is then to solve the formidable inverse problem of finding

a plausible internal solar profile that has these frequencies as its spectrum. The growth in

complexity of helioseismology can be segmented into a sort of scientific trilogy: ordered by

decreasing amount of assumed symmetry (which, unsurprisingly, is also their chronological

order).

1.4.1 Spherical helioseismology

We call the first act “spherical” helioseismology, as it treats the Sun as a spherically sym-

metric ball of gas.
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Under this spherical assumption, the frequencies can be interpreted as eigenvalues of the

wave equation in spherical coordinates, but with a sound speed that changes as a function

of radius. The inverse problem is then to find an appropriate radial profile for the sound

speed, such that the resulting eigenvalues match these observed frequencies (see Figure 1.3).

After some regularization, a plausible profile can be found. Newton’s gravitational law,

the hydrostatic assumption, and some knowledge of the appropriate equation of state, can

then be leveraged to back out the density, pressure, and entropy as a function of radius.

It is the abrupt flattening of this radial entropy profile at around 70 percent of the radius

that provided the first accurate measurement of the depth of the solar convection zone (see

Figure 6.2 and Chapter 4).

While spherical symmetry is a reasonable lowest-order approximation, the Sun does

indeed have a preferred direction, namely that of its rotation axis.

Figure 1.3: Example of the spatial profile of a standing solar sound wave. Illustration of
an eigenfunction of the spherical wave equation (radial order n = 14, angular degree l = 20
and azimuthal order m = 16), where the sound speed as a function of radius is given by a
standard solar model [22]. Colors denote radial displacement. The low amplitude in the
deep interior and near the poles results in an insensitivity to the behavior in these regions.

5



1.4.2 Cylindrical helioseismology

This leads us to the second act: “cylindrical” helioseismology, so-called due to the assump-

tion that the Sun is rotationally symmetric only about a single preferred axis.

Recall that, in the spherical case, the angular parts of the eigenfunctions (the spherical

harmonics) have a degeneracy — either choice of sign for the azimuthal wavenumber

m gives the same eigenvalue. As the Sun is only weakly rotating, the eigenfunctions

and associated eigenvalues of this system will be very similar to those in the spherically

symmetric case.

The key difference is that when rotation is included, the Doppler effect due to toroidal

flows2 serve to upshift the prograde modes, and likewise downshift the retrograde modes.

As the precision of surface Doppler measurements increased, the splitting of these

prograde and retrograde modes allowed for an accurate estimation of the internal rotation

profile, now as a function of both radius and latitude due to the relaxed symmetry assumption

[95, 26] (see Figure 1.4).

While the radial shear in the outer layers due to a slower rotating surface was somewhat

expected (Section 1.3), the appearance of a sharp radial gradient at the base of the convection

zone came as a relative surprise. We remark that this method is effectively insensitive to the

solar poloidal flows.

1.4.3 Local helioseismology

As with any good plot, the final act comes with a twist, discarding all assumptions of

symmetry. Due to its ability to probe flows in arbitrary directions, as well as at particular

locations in time and space, the final act has been coined “local” helioseismology.

2This Doppler effect is different than that used to infer surface velocities. The surface motions are measured
via a shift in the electromagnetic frequency, while the internal flows modify the standing sound waves.
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In contrast to the first two acts, the protagonist no longer considers global modes of

oscillation. Instead, one considers perturbations at one point on the surface, and measures

the correlation with subsequent perturbations at some other location. A perturbation at the

first point excites sound waves in all directions. As the sound speed increases with depth in

the Sun, these wave packets are refracted and bend back towards the surface, appearing at

another point some distance away and some time later.

Since the sound speed profile as function of radius is well-characterized by spherical

helioseismology, ray-tracing can be used to estimate these waves’ trajectories. Again, in

the spherically symmetric case, one would expect the transit time from the first point to

the second to be equivalent to the reverse. However, if there is a net subsurface flow in

the direction from the first to the second point, then the Doppler effect will cause a wave

traveling in this direction to arrive earlier than expected. Likewise, the wave traveling in

the opposite direction will arrive later than expected. By measuring the splitting of the

transit times for waves with trajectories of different directions and depths of penetration, it

is possible to determine the poloidal flow as a function of radius and latitude. Moreover,

by not integrating over the entirety of the Sun, one can probe the asymmetric motions of

large-scale convection.

We note that this method is most accurate near the surface, but becomes quite noisy as

the bottom of the convection zone is approached. Moreover, it is relatively insensitive to

radial flows, as their contributions to the transit time approximately cancel.

1.5 Differential rotation profile of the solar interior

Arguably, the most beautiful and surprising picture from this general endeavor comes from

cylindrical helioseismology, namely, the differential rotation profile of the solar interior.

7



As shown in Figure 1.4, there are broadly two regions: an outer convection zone, and a

radiative interior. The convection zone, so-called because heat transport is dominated by

convection, occupies the outer ∼30%, and is characterized by an equator that rotates faster

than the poles. The isorotation contours in this region are consistently tilted with respect

to the rotation axis, being approximately radial at mid-latitudes. The radiative interior,

so-called because it transports heat primarily by radiative diffusion (as it is stably stratified),

lies below the convection zone, and exhibits markedly uniform rotation.

Moreover, as interesting phenomena often arise at boundaries, the interfaces are also

given names. The interface between the convection zone and the solar wind is known as

the near shear surface layer (NSSL), occupying the outer ∼5%, and is characterized by

a slowing of rotation near the surface. The interface between the radiative interior and

the convection zone is known as the tachocline, and corresponds to the surprisingly sharp

transition from the interior uniform rotation to the outer differential rotation.
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Figure 1.4: Helioseismology probes the interior of the Sun. Displayed are contours of
constant solar rotation (data from [55]), with lighter colors indicating faster rotation. There
are roughly four regions (from interior to surface): the radiative interior, the tachocline,
the convection zone (CZ), and the near surface shear layer (NSSL). The radiative interior
corresponds to the inner ∼70% of the Sun, and is characterized by markedly uniform
rotation throughout. The tachocline corresponds to the surprisingly narrow (unresolved)
transition from this uniform rotation to the differential rotation of the CZ, where the equator
rotates faster than the poles. The NSSL corresponds to the systematically slower rotation in
the outer ∼5% of the Sun. Note that the inversion kernels used to determine this profile are
rather insensitive to the rotation in the deep interior and near the rotation axis, so the relative
error in these regions becomes of order unity.

Throughout this thesis, we will discuss some of the open questions about each of these

regions. For example, do the gross features of rotation and circulation in the CZ require

magnetic fields [73, 74], or does an HD explanation suffice? How important are convective

motions for the NSSL [68, 54]? Can the tachocline be understood from an equilibrium

perspective, or must turbulence be invoked [90]? Does the tachocline require magnetic

fields [39], and if so, can it exist without a solar cycle [11]? To what extent can torsional

oscillations be understood as a series of quasi-static equilibria [79, 45]? To help shed light
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on some of these questions, which have been considered extensively in the literature, in this

thesis, we use the generalized G–S framework to study solar-like equilibrium states. This

framework can serve as a “null model” to help determine which features have an equilibrium

description, and which are necessarily dynamical in origin.

1.6 Thesis roadmap

The structure of this thesis is as follows. In Chapter 2, we motivate our equilibrium

approach and give the relevant equations, namely, those of the Generalized Grad–Shafranov

equation. In Chapter 3, we detail our numerical scheme to solve this equation, which uses

the Lagrangian formulation and employs a novel method for incorporating unconstrained

boundary conditions.

We then present our results for the regions of the Sun. In Chapter 4, we consider the

convection zone, showing that the hydrodynamic limit is sufficient to describe the observed

deviation from the cylindrical rotation of Taylor–Proudman balance. In Chapter 5, we

consider the near surface shear layer, showing that the inclusion of a weak poloidal flow in

this hydrodynamic limit results in a qualitative near surface shear layer (albeit smaller). In

Chapter 6, we consider the tachocline, showing that there exist smooth solutions crossing

the Alfvén surface, although they might not be robust to perturbations.

In Chapter 7, we summarize our results, discuss some caveats of our framework, and

outline future directions.
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Chapter 2

An Equilibrium Approach

Entities should not be multiplied without necessity.

—– William of Ockham

In this chapter, we describe our theoretical framework. We start by motivating why using

an equilibrium model to describe the Sun, a turbulent spheroid, can be a fruitful endeavor

(Sections 2.1 and 2.2). We then present the generalized Grad–Shafranov equation (which

describe such equilibria), reviewing its derivation and its equivalent Lagrangian formulation

(Sections 2.3 and 2.4).

2.1 The surprising insights of stationary

solar wind models

The Sun is a complex dynamic turbulent system, with timescales ranging from ∼ 10 min

for convection, to ∼ 10 yr for the solar cycle. Yet, to gain some understanding of its basic

behavior, in this thesis, we turn to a relatively simple model: stationary, axisymmetric, ideal
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MHD (with arbitrary flows), ie, the generalized Grad–Shafranov equation. Before losing

our (justifiably) skeptical reader, we remark that equilibrium models can yield valuable

insight, even when applied to markedly non-stationary systems. To support this viewpoint,

we now shoehorn a second trilogy into this thesis: that of the surprising success of stationary

solar wind models.

2.1.1 The 1D hydrodynamic model of Parker

The solar wind is arguably one of the best examples of well-developed MHD turbulence.

However, with only a laminar, spherically symmetric hydrodynamic model, Parker [71]

was able to correctly conclude that the solar system is filled with the Sun’s supersonic

outflow, with the gravitational potential serving as a sort of “de Laval nozzle” [2] for the hot

solar atmosphere. While Parker’s conclusion was initially not well-received, his qualitative

result has since been unambiguously validated [80]. Moreover, his quantitative estimates

(500− 1500 km/s) were not far off the mark.

2.1.2 The 1D hydromagnetic model of Weber & Davis

A decade later, Weber & Davis [98] extended the Parker model by including a magnetic field.

While still spherically symmetric, their 1D MHD generalization pointed to the importance

of the Alfvén radius for solar spin down. Inside this radius, magnetic forces dominate, so

the field lines are primarily radial, and the wind co-rotates with the star. Outside this radius,

inertial forces dominate, and the field lines form the familiar Parker spiral, with the flow now

effectively free streaming. Thus, the effect of the magnetic field is essentially to provide a

longer lever-arm so that the star can more effectively shed its angular momentum.
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2.1.3 The 2D hydromagnetic model of Sakurai

This spherically symmetric MHD model can be generalized into one that assumes only

cylindrical symmetry [70, 53]. This allows one to model the spatial structure of such stellar

outflows. In particular, Sakurai [86] found that the critical surfaces are generally shifted

to become more prolate, with flows asymptotically aligning with the rotation axis at large

spherical radius. Similar results, including cases with a “dead zone” (ie, closed field lines

near the equator), were found by Keppens & Goedbloed [58].

2.2 The Great Success of G–S

The equations that govern such 2D hydromagnetic outflows are collectively known as the

generalized Grad–Shafranov (G–S) equation, and have a remarkable pedigree of applica-

tions. Here, we review some of these applications.

Plasma physicists often first learn about the G–S equation within the context of axisym-

metric magnetic confinement devices, in which inertial forces due to flows are negligible.

In fact, the magnetostatic version was originally derived in the 1950s to model such ex-

periments [40]. Even now, the design of tokamaks is often guided by this magnetostatic

equation and its associated stability analysis, despite the fact that such plasmas are fraught

with turbulence, often develop significant rotation, and do not strictly satisfy the assumptions

of MHD in the first place (eg, with respect to collisional timescales).

The observation of a toroidal rotation [52] in these experiments motivated the inclusion

of flows. Although adding a toroidal flow to the magnetostatic G–S equation results in

an extra term in the PDE, it yields no fundamental difference to its properties [96]. The

inclusion of a poloidal flow, however, can result in significant qualitative changes. For

example, the numerical solutions of Guazzotto et al. [42] suggested that poloidal flows could
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be important for internal transport barriers. In particular, as the poloidal flow becomes on

the order of the poloidal sound speed csp = csBp/B, the density can jump discontinuously

across flux/stream surfaces. This leads to large shear, potentially suppressing turbulence.

While such a transonic equilibrium was later shown to be likely suppressed by resonant

interactions [15], the parameter space is quite large, and searching for other ways to exploit

peculiarities associated with the poloidal flow may still prove to be a fruitful endeavor.

The G–S equation has also seen a variety of other astrophysical applications, aside

from the previously mentioned solar wind. For example, various generalizations have

extended its range of applications: relativistic [63, 36, 14] and 2-fluid [92] effects have been

included for modeling accretion disks, and superconductivity [61, 60] has been included

for neutron stars. One particularly relevant application is its use in reconstructing coherent

2D features within the solar wind, using data from only a single flyby of a spacecraft.

Essentially, when a spacecraft intercepts a structure in the solar wind, one only obtains

data along its 1D trajectory through the full 3D structure [88]. When the structure can be

assumed to be elongated, then one can apply the translationally invariant G–S equation to

reduce the system to a 2D problem. The data from the spacecraft can then be seen as a sort

of “internal boundary condition”, and the solution can be integrated (with an appropriate

regularization) throughout the entire 2D domain. It is quite remarkable that this process

results in a reasonable estimate of the structure, as if it were encoded as a “hologram” in

this the lower-dimensional input data. As the mean quantities of the Sun are rotationally

symmetric, the equilibrium problem can be similarly reduced to a 2D G–S equation. As

observational data are best known near the surface, an analogous inward extrapolation could

similarly provide plausible profiles.

Given the success of the G–S equation in providing plausible equilibrium models from

incomplete observational data, we propose an application to another compact astrophysical

object, the Sun.
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2.3 Derivation of the Grad–Shafranov equation

In this section, we outline the derivation of the G–S equation for an axisymmetric plasma

with flows in a gravitational potential.

2.3.1 Constructing the flux/stream surfaces

Our starting point is the equation of stationary, axisymmetric, ideal MHD:

∇ · (ρv) = 0, (2.1)

∇ · B = 0, (2.2)

ρv ·∇v +∇p+ ρ∇Φ = (∇× B) × B, (2.3)

∇× (B × v) = 0, (2.4)

v ·∇σ = 0, σ ≡ ln (p/ργ) , (2.5)

∂

∂φ
= 0, (2.6)

where ρ, v, B, p, σ, and Φ are the density, fluid velocity, magnetic field, pressure, entropy,

and external potential, respectively, and we have absorbed the permeability into the units of

the magnetic field.

Note that, while we close the system by assuming conservation of entropy (equa-

tion (2.5)), other choices are also possible. For example, for magnetic confinement experi-

ments, as heat transport along field lines is significantly more efficient than advection by

poloidal flows, one might desire a closure that ensures constant temperature along the field

lines. This leads to a similar set of equations that we will not consider here.

We use (r, θ, φ) for spherical and (λ, z, φ) for cylindrical coordinates, with λ = r sin θ,

z = r cos θ, and φ as the longitudinal coordinate, ie, the direction of symmetry about the

z-axis.
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As the magnetic field and mass flux are axisymmetric (equation (2.6)) and divergenceless

(equations (2.1) and (2.2)) vector fields, they each admit a convenient representation in

terms of two scalar functions of the poloidal plane, which correspond to their poloidal and

toroidal components, namely,

B = ∇φ×∇ψ +Bφλ∇φ, (2.7)

v =
1

ρ
∇φ×∇χ+ vφλ∇φ, (2.8)

where ψ and χ are axisymmetric. An application of Faraday’s law (equation (2.4)) gives

B × v = ∇f, (2.9)

where f is some axisymmetric function.

Dotting equation (2.9) with B yields B ·∇f = 0. Likewise, dotting equation (2.9) with

v yields v ·∇f = 0. Hence, the poloidal components of B and v are aligned with each

other and with surfaces of constant f . Thus, as ∇ψ ‖ ∇χ ‖ ∇f , we have that ψ = ψ(ξ),

χ = χ(ξ), f = f(ξ), and

B = ψ′∇φ×∇ξ +Bφλ∇φ, (2.10)

v =
χ′

ρ
∇φ×∇ξ + vφλ∇φ, (2.11)

where λ is the cylindrical radius; φ is the angle about the axis of symmetry; ξ is a scalar

“label” of the flux/stream surfaces; ψ (ξ) and χ(ξ) are arbitrary functions of this label; and

primes denote partial differentiation with respect to ξ.
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2.3.2 Six arbitrary flux/stream functions

We have seen that the (arbitrary) functions ψ(ξ) and χ(ξ) determine the poloidal field and

flow, respectively. In fact, there are four additional such functions of ξ that appear in the

derivation of the generalized Grad–Shafranov equation.

The first of these can be found by substituting equations (2.10) and (2.11) into equa-

tion (2.9):

F (ξ)∇ξ =
1

λ

(
ψ′vφ −

χ′

ρ
Bφ

)
∇ξ =⇒ F (ξ) =

1

λ

(
ψ′vφ −

χ′

ρ
Bφ

)
. (2.12)

The next can be obtained from the toroidal component of the momentum equation (2.3):

B ·∇ [λ(ψ′Bφ − χ′vφ)] = 0 =⇒ L(ξ) = λ(ψ′Bφ − χ′vφ). (2.13)

The following function of ξ requires much less vector calculus:

v ·∇σ = 0 =⇒ σ = σ(ξ). (2.14)

Equations (2.12) and (2.13) give expressions for the toroidal component of the magnetic

field and velocity:

Bφ =
Lψ′/λ+ λFχ′

ψ′2 − χ′2/ρ
(2.15)

vφ =
Lχ′/ρλ+ λFψ′

ψ′2 − χ′2/ρ
. (2.16)

The definition of the last function of ξ gives rise to the magnetic generalization of the

Bernoulli equation, and deserves its own subsection.
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2.3.3 The Bernoulli equation: an algebraic expression for ρ

Force balance (equation (2.3)) in the direction of the field/flow results in the magnetic

generalization of the Bernoulli equation, yielding H(ξ), the last function of ξ:

H(ξ) =
1

2

χ′2

ρ2

|∇ξ|2
λ2

+
1

2

χ′2

ρ2

[(
L

λ
+
λχ′F

ψ′

)/(
ψ′2 −

χ′2

ρ

)]2
− 1

2

λ2F 2

ψ′2
+

γ

γ − 1
ργ−1eσ + Φ.

(2.17)

In general, for a given λ, z, and ξ, there are either 0, 2, or 4 solutions for ρ. At some

precise points, neighboring roots will briefly coincide. It is at these points that the numerical

method should smoothly switch from one solution to the other. We will discuss this issue in

depth in Chapter 6.

2.3.4 Correspondence with physical variables

In certain limits, these functions of ξ have clear physical interpretations (eg, pressure and

toroidal flux for magnetostatic configurations). In this generalized case, some functions

become intertwined. Nevertheless, some loose connections may be made. Clearly, σ(ξ) is

the entropy, and ψ′(ξ) and χ′(ξ) control the poloidal field and flow, respectively. As the

generalization of the notion of head in fluid mechanics, H(ξ) corresponds to the total energy

of the field/flow. The least intuitive functions are F (ξ) and L(ξ). In the hydrodynamic limit

(χ′2/ρ� ψ′2), L(ξ) corresponds to the angular momentum of the flow and F (ξ) controls

the toroidal field, while in the magnetostatic limit (χ′2/ρ� ψ′2), F (ξ) corresponds to the

toroidal flux of the field and L(ξ) controls the toroidal flow.

18



2.3.5 The G–S equation: a PDE for ξ

Force balance (equation (2.3)) in the direction perpendicular to the field/flow yields the G–S

equation, a second-order nonlinear PDE governing ξ:

∇ ·
[(
ψ′2 −

χ′2

ρ

) ∇ξ
λ2

]
− 1

2

(
ψ′2 −

χ′2

ρ

)′ |∇ξ|2
λ2

+

[(
L2

2λ2
+
χ′LF

ψ′
+
ρλ2F 2

2

)/(
ψ′2 −

χ′2

ρ

)
− 1

γ − 1
ργeσ + ρH

] ′
= 0 (2.18)

where γ is the adiabatic index, henceforth taken to be that for an ideal monatomic gas, 5/3.

Note that the divergence operator is taken in the full 3D geometry, despite the fact that the

variables depend only on the 2D poloidal plane. Hence, the first term in equation (2.18),

expressed in terms of partial derivatives, is

∇ ·
[(
ψ′2 −

χ′2

ρ

) ∇ξ
λ2

]
=

1

λ

∂

∂λ

[(
ψ′2 −

χ′2

ρ

)
1

λ

∂ξ

∂λ

]
+

1

λ2

∂

∂z

[(
ψ′2 −

χ′2

ρ

)
∂ξ

∂z

]
.

(2.19)

It is important to highlight several potential numerical challenges associated with solving

equation (2.19). This PDE is of mixed type; it can be elliptic in some portions of the

domain, while simultaneously hyperbolic in others. Mixed-type PDEs may lead to numerical

difficulties, and care must be taken [13, 29]. While in the solar regime, the majority of the

domain is in the elliptic regime, we predict that a thin hyperbolic layer appears around the

location of the tachocline. We discuss this issue in Chapter 6, when such transitions become

relevant.

Moreover, equation (2.18) becomes singular when ρ→ ρc (ξ) ≡ χ′2/ψ′2. An applica-

tion of l’Hôpital’s rule implies that, in order for the second line to remain finite, then

λ2 → λ2
c (ξ) ≡ −ψ′L/χ′F . The differential operator is unable to balance this diverging
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term, owing to the vanishing term inside the differential operator. Fortunately, the equations

end up naturally conspiring to avoid this issue (see Chapter 6)!

2.4 Lagrangian formulation

In this section, we describe an equivalent Lagrangian description of the G–S equation, as

we will use this formulation to implement our numerical methods. Such methods have

been shown to be particularly suitable for solving mixed-type nonlinear PDEs with critical

surfaces [83].

The similarity between equations (2.17) and (2.18) is no accident; they express the

stationarity of a Lagrangian with respect to perturbations to ρ and ξ, respectively. To fit the

Lagrangian on a single line, consider the following definitions:

Π1 ≡ H +
1

2

λ2F 2

ψ′2
− Φ, (2.20)

Π2 ≡
γ

γ − 1
eσ, (2.21)

Π3 ≡
1

2

(
L

λχ′
+
λF

ψ′

)2

. (2.22)

The Lagrangian is then

L [ξ, ρ] =

∫

D

[
1

2

(
ψ′2 −

χ′2

ρ

) |∇ξ|2
λ2
− ρΠ1 +

ργ

γ
Π2 −

χ′2/ρ

ψ′2 − χ′2/ρρΠ3

]
dV, (2.23)

where the integral is taken over the 3D volumeD (hence, an additional factor of λ is required

when performing the area integral over the poloidal plane).
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2.4.1 An important limit and a renormalization

Both the poloidal field and flow are used in the derivation of the G–S equation, and are

important for deriving the flux/stream functions. However, while the magnetostatic limit is

relevant to many terrestrial experiments, the outer layers of the Sun are definitively in the

hydrodynamic limit [46].

For the limit of zero poloidal flow, χ′ → 0, equation (2.22) appears to diverge. However,

its multiplication by χ′2 in equation (2.23) renders the Lagrangian finite, and these equations

may still be used.

However, in the limit of zero poloidal field, ψ′ → 0, the Lagrangian (as written) indeed

diverges. Hope is not lost, however; infinite Lagrangians are often still useful, as we

are only interested in their stationarity [99]. In our case, there exists an appropriately

renormalized version of equation (2.20) that remains finite as ψ′ → 0, while resulting in

identical Euler–Lagrange equations:

H =
FL

ψ′χ′
+H. (2.24)

We remark that this redefinition conversely causes the Lagrangian that uses H to diverge in

the χ′ → 0 limit1.

This illustrates the usefulness of using ξ as a flux “label”, as compared to using the

poloidal flux ψ as the independent variable in the PDE. Moreover, consider a configuration

in which the poloidal field changes sign. The standard use of ψ as the flux function would

cause different surfaces to have the same label. However, if one instead uses ξ as a label of

these different surfaces, there is no issue with having ψ′ change sign.

1The treatment of ψ′ → 0 and χ′ → 0 depends on precisely how the joint limit is taken.
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Chapter 3

The Numerical Scheme

Numbers are like chickens;

if there’s a hole in your code, they will find it.

—– Stuart R. Hudson

Tortoise: Jōshū “unasked” the question.

Achilles: Exactly!

—– Douglas Hofstadter, Gödel, Escher, Bach

3.1 Description of the numerical problem

Essentially, the goal is to solve δL = 0 (equation (2.23)) for two scalar variables, ξ and ρ,

within some 2D domain D with coordinates λ ∈ R≥0 and z ∈ R. While the equation for

ρ is an algebraic expression (2.17), the equation governing ξ is a PDE (2.18), so boundary

conditions must be given for ξ. In addition, the six auxiliary scalar functions, ie, ψ(ξ), χ(ξ),

F (ξ), L(ξ), σ(ξ), and H(ξ), must be given. These are functions of ξ only, but are otherwise

arbitrary. Finally, a fixed external potential Φ is given as a function of this domain. In
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summary:

solve for:





ξ (λ, z)

ρ(λ, z)
(3.1)

given:





domain: D ⊆ {(λ, z) ∈ R2, λ ≥ 0}

boundary conditions: αdξ + αnn̂ ·∇ξ = β on ∂D

auxiliary functions: f : ξ → R ∀f ∈ {ψ, χ, F, L, σ,H}

external potential: Φ : (λ, z)→ R.

(3.2)

3.2 Previous numerical methods

Before the author developed the numerical scheme used to produce the results of this thesis,

there were several attempts that proved to be inadequate. While frustrating, there were

important lessons that informed our final numerical scheme. We now briefly discuss these

“learning opportunities”.

3.2.1 The FLOW code

We started by using the Fortran code named FLOW developed by Guazzotto et al. [42], in-

tended to study MHD equilibria relevant for toroidal confinement experiments. In particular,

their code includes effects from both toroidal and poloidal flow, ie, it solves the generalized

Grad–Shafranov equation. The case of pure toroidal rotation is not particularly difficult, as

the equation is elliptic everywhere and does not contain vanishing denominators. While

previous investigations generally focused on the weak poloidal flow regime, the FLOW code

is particularly notable for its ability to incorporate strong poloidal flows. In particular, they

were able to obtain equilibria with a discontinuous transition between a subsonic domain

and a supersonic domain.
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The domain is discretized into a uniform grid in (λ, z), with spatial step sizes of δλ and

δz. The divergence term∇ ·
[(
ψ′2 − χ′2

ρ

) ∇ξ

λ2

]
in the PDE (2.18) is approximated by finite

difference:

D[ξ, ρ]|i,j =
1

λi,j

{
1

δλ

[(
ψ′2i+1/2,j −

χ′2
i+1/2,j

ρi+1/2,j

)
∂ξ
∂λ
|i+1/2,j

λi+1/2,j

−
(
ψ′2i−1/2,j −

χ′2
i−1/2,j

ρi−1/2,j

)
∂ξ
∂λ
|i−1/2,j

λi−1/2,j

]

+
1

δz

[(
ψ′2i,j+1/2 −

χ′2
i,j+1/2

ρi,j+1/2

)
∂ξ
∂z
|i,j+1/2

λi,j+1/2

−
(
ψ′2i,j−1/2 −

χ′2
i,j−1/2

ρi,j−1/2

)
∂ξ
∂z
|i,j−1/2

λi,j−1/2

]}
.

(3.3)

Scalar quantities on half-integer points are evaluated using values of ξ and λ equal to the aver-

age between the neighboring nodes (eg, χ′2i+1/2,j = χ′2(ξi+1/2,j), and ξi+1/2,j = (ξi,j + ξi+1,j) /2).

Gradient quantities on half-integer points are defined as

∂ξ

∂λ

∣∣∣∣
i+1/2,j

=
1

δλ
(ξi+1,j − ξi,j)

∂ξ

∂z

∣∣∣∣
i,j+1/2

=
1

δz
(ξi,j+1 − ξi,j) .

The remaining terms in the PDE (2.18) will be denoted as A[ξ, ρ]|i,j , with derivatives given

by

∂ξ

∂λ

∣∣∣∣
i,j

=
1

2δλ
(ξi+1,j − ξi−1,j)

∂ξ

∂z

∣∣∣∣
i,j

=
1

2δz
(ξi,j+1 − ξi,j−1) .

The code then solves the finite difference equation

D[ξ, ρ]|i,j + A[ξ, ρ]|i,j = 0 ∀i, j
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by updating ξi,j as follows:

ξn+1
i,j → ξni,j −

(
∂D[ξ, ρ]|i,j

∂ξi,j

)−1(
D[ξ, ρ]|i,j + A[ξ, ρ]|i,j

)
.

This is essentially a Newton’s method, except it only uses the derivative associated with

the divergence term D, neglecting the derivative associated with the algebraic term A. For

magnetic confinement experiments, such an approximation is generally valid (as ∂A/∂ξ

tends to be subdominant compared to the terms associated with D). However, in the solar

regime, the poloidal terms are small compared to the toroidal terms, and the change in A

with respect to ξ can be significant. We found that the code does not converge unless this

change is incorporated, ie,

ξn+1
i,j → ξni,j −

(
∂D[ξ, ρ]|i,j

∂ξi,j
+
∂A[ξ, ρ]|i,j

∂ξi,j

)−1(
D[ξ, ρ]|i,j + A[ξ, ρ]|i,j

)
.

Moreover, we implemented several additional modifications to the code relevant for

running in the solar regime. For example, we allowed for the grid to be specified in spherical

coordinates (r, θ), including the appropriate changes to the divergence operator. We also

allowed for variable grid spacing (allowing for, eg, more radial resolution at the surface),

again appropriately modifying the terms in the divergence operator.

To determine the density, the FLOW code uses a root solver to find all the possible

solutions to the Bernoulli equation (2.17), and a method for choosing the appropriate root

is required. While there is an option for transonic equilibria, the method assumes that

there is a discontinuous switch from the subsonic to the supersonic root. Moreover, this

choice of sub/supersonic root is selected using a single cutoff value for ξ (determined at

each iteration) intended to separate the two domains, thus constraining the transition to

align with the flux/stream surfaces. However, the trans-Alfvénic case we are considering is
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notably different: the surfaces separating the different choices of solutions for the density

are not aligned with the flux/stream surfaces, and incorporating an appropriate method for

determining which solution for ρ to choose at each gridpoint appears highly nontrivial.

3.2.2 Our old finite element method

Given the difficulties associated with adapting the FLOW code, we developed our own

solver of the same set of equations. The major changes included in this attempt were:

1. A flexible domain, taking the form of an unstructured triangular mesh.

2. An adaptive triangular mesh, shifting nearby vertices to exactly coincide with the

Alfvén surface at each iteration.

3. Piecewise continuous polynomials are used as the basis functions.

4. Gaussian quadrature to evaluate the integrals is used to solve the weak form of the

PDE.

5. Either a root finder or the weak form is used to solve the Bernoulli equation.

Solving the weak form of the PDE

The weak formulation allows for a discontinuous∇ξ, as compared to the original PDE. Such

a discontinuous gradient could result in the original PDE being not well-defined. To obtain

the weak form of the PDE, multiply it by a test function g(x) and integrate the differential
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operator by parts:

∫

D

{
g(x)∇ ·

[(
ψ′2 −

χ′2

ρ

) ∇ξ
λ2

]
− g(x)

(
ψ′2 −

χ′2

ρ

)′ |∇ξ|2
λ2

}
dV +

∫

D
g(x)A(x, ξ, ρ) dV = 0

=⇒
∫

∂D

[
g(x)

(
ψ′2 −

χ′2

ρ

)]
n̂ ·∇ξ
λ2

dS

−
∫

D

[(
ψ′2 −

χ′2

ρ

) ∇g ·∇ξ
λ2

+ g(x)

(
ψ′2 −

χ′2

ρ

)′ |∇ξ|2
λ2

]
dV

+

∫

D
g(x)A(x, ξ, ρ) dV = 0. (3.4)

If a function ξ(x) satisfies this relation for all test functions g(x), then it is said to be a weak

solution of the PDE. We remark that the function A used here does not contain the term

involving |∇ξ|2, as it did in the FLOW code.

The weak form of the Bernoulli equation is comparatively simpler:

∫

D
g(x)

{
1

2

χ′2

ρ2

|∇ξ|2
λ2

+
1

2

χ′2

ρ2

[(
L

λ
+
λχ′F

ψ′

)/(
ψ′2 −

χ′2

ρ

)]2

−1

2

λ2F 2

ψ′2
+

γ

γ − 1
ργ−1eσ + Φ−H(ξ)

}
dV = 0 (3.5)

The unstructured, adaptive discretization

The domain is discretized into an unstructured triangular mesh using the code GMSH [33].

The discretized function space for both g and ξ are the continuous, piecewise cubic functions

over these triangles. The cubic polynomial on each triangle has 10 degrees of freedom;

hence 10 nodes are associated to each triangle (1 on each of the corners, 2 equally spaced

along each edge, and 1 at the barycenter). The basis function gi associated to node i is the

continuous, piecewise cubic with the value 1 at node i and 0 for all others. Discretizing ξ (x)
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as
∑
ξjgj , equation (3.4) becomes a matrix equation Mijξj + bi = 0 for the coefficients ξj:

∫

∂D

[
g

(
ψ′2 −

χ′2

ρ

)]
n̂ ·∇ξ
λ2

dS

−
∫

D

[(
ψ′2 −

χ′2

ρ

) ∇gi
λ2

+

(
ψ′2 −

χ′2

ρ

)′
gi
λ2
∇ξ
]
·∇gj ξjdV

︸ ︷︷ ︸
Mijξj

+

∫

D
giA(x, ξ, ρ) dV

︸ ︷︷ ︸
bi

= 0 ∀i. (3.6)

To approximate the integrals, we use Gaussian quadrature. Since we are multiplying

pairs of basis functions of order 3, we require accuracy for polynomials up to order 6. This

requires 12 evaluation points for the triangles and 4 evaluation points for the lines (edges).

Thus, the equations we are solving are:

Nl∑

n=1

[
4∑

q=1

wqngi

(
ψ′2 −

χ′2

ρ

)
ξjn̂ ·∇gj

]

−
Nt∑

n=1

{
12∑

q=1

wqnξj

[(
ψ′2 −

χ′2

ρ

) ∇gi
λ2

+

(
ψ′2 −

χ′2

ρ

)′
gi
λ2
∇ξ
]
·∇gj

+
12∑

q=1

wqngiA(x, ξ, ρ)

}
= 0 (3.7)

Nt∑

n=1

{
12∑

q=1

wqngi

[
1

2

χ′2

ρ2

|∇ξ|2
λ2

+
1

2

χ′2

ρ2

((
L

λ
+
λχ′F

ψ′

)/(
ψ′2 −

χ′2

ρ

))2

−1

2

λ2F 2

ψ′2
+

γ

γ − 1
ργ−1eσ + Φ−H(ξ)

]}
= 0, (3.8)

where Nl and Nt are the numbers of lines and triangles in the grid respectively, and the parts

inside the sums are evaluated at xqn (the qth quadrature point of element n) with associated

weight wqn.
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As the domain is unstructured, it is possible to specify an arbitrary boundary. Moreover,

one can specify variable minimum resolutions for different portions of the domain. This

provides additional flexibility, allowing for simultaneous simulation of the global structure

as well as smaller details (eg, the NSSL).

If one evaluates terms in the PDE or Bernoulli equation too close to the Alfvén surface,

then one is required to evaluate the ratio of two small numbers, a familiar source of

numerical hot water. To remedy this issue, we found that it was advantageous to have

triangles completely within the super-Alfvénic or sub-Alfvénic regimes, with the edges of

the triangles being aligned with the Alfvén surface. As the PDE and Bernoulli equation are

only evaluated using the quadrature points, which are completely interior to the triangles,

this protocol essentially solved the aforementioned issue of small denominators.

While constructing such a versatile numerical scheme was an important learning exercise,

the many moving parts associated with our unstructured, adaptive discretization proved to

add unnecessary complications to the already subtle problem of crossing the Alfvén surface.

As such, we constructed a new (simpler and more elegant) numerical scheme that crosses

the Alfvénic border with less baggage.

3.3 New numerical scheme

In this section, we discuss our final, more elegant numerical scheme for solving δL = 0

(equation (2.23)).

3.3.1 Discretizing the Lagrangian

Our numerical scheme begins by discretizing the Lagrangian, as opposed to discretizing the

resulting Euler–Lagrange equations.
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The spherical domain is discretized in (r, θ) space as an Nr ×Nθ regular square mesh.

The function ξ is represented as piecewise linear1 over the squares by values on the integer

vertices (i, j). The function ρ is represented as piecewise constant quantities; the average

density in a square is given by values on the centered half-integer points (i+ 1/2, j + 1/2).

Let us denote these vectors as ξd and ρd, the discrete version of Lagrangian (2.23) is then:

Ld [ξd, ρd] =
Nr∑

i=1

Nθ∑

j=1

{[
1

2

(
ψ′2 −

χ′2

ρ

) |∇ξ|2
λ2
− ρΠ1 +

ργ

γ
Π2 −

χ′2/ρ

ψ′2 − χ′2/ρρΠ3

]
λr

}

i+1/2,j+1/2

.

(3.9)

We express ξ and |∇ξ|2on the half-integer points as follows:

ξi+1/2,j+1/2 =
1

4
(ξi,j + ξi+1,j + ξi,j+1 + ξi+1,j+1) (3.10)

|∇ξ|2i+1/2,j+1/2 =
1

2

[(
ξi+1,j − ξi,j

∆r

)2

+

(
ξi+1,j+1 − ξi,j+1

∆r

)2
]

+
1

2

[(
ξi,j+1 − ξi,j

ri∆θ

)2

+

(
ξi+1,j+1 − ξi+1,j

ri+1∆θ

)2
]
. (3.11)

3.3.2 Boundary conditions

When either the pole and equator are a part of the boundary of the simulation domain, their

rotational and reflectional symmetries motivate a natural choice of boundary condition,

viz, Dirichlet boundary conditions on the axis and “Neumann-like” boundary conditions

on the equator. However, other choices might be relevant for the inner and outer boundary

conditions. We now discuss the case of boundary conditions imposed by these symmetries,

and address the case of other choices in the next section.
1The functions over the squares are linear in each direction individually (c+ crr + cθθ + crθrθ).
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For the sake of explanation, let us represent the continuous Lagrangian as

L [ξ, ρ] =

∫

D

[
f |∇ξ|2 − g

]
dV, (3.12)

where

f = ψ′2 − χ′2

ρ
,

g = ρΠ1 −
ργ

γ
Π2 +

χ′2/ρ

ψ′2 − χ′2/ρρΠ3.

Taking the variation with respect to ξ and integrating by parts yields

δL =

∫

∂D
f(n̂ ·∇ξ)δξdS −

∫

D

[
∇ · (f∇ξ)− ∂f

∂ξ
|∇ξ|2 +

∂g

∂ξ

]
δξdV. (3.13)

For both Dirichlet and Neumann boundary conditions, the integral over the boundary

vanishes. Thus, setting this variation to zero for all δξ (that respect the boundary conditions)

implies that the integral over the volume must be identically zero, which in turn implies the

PDE (equation (2.18)).

3.3.3 Unconstraining the boundary conditions

Our domain is often completely within the interior of the Sun and there is no natural choice

of boundary conditions. In these cases, we desire solutions that satisfy the G–S equations in

the interior of the domain, while allowing the “boundary conditions” to vary such that the

solution has some other desired properties. In particular, we desire smooth solutions, such

that the short wavelength oscillations (see Section 5.2 in Chapter 4) are suppressed. This

turned out to be highly nontrivial, and we tried several approaches before converging on a

solution.
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First, we attempted to iteratively solve the PDE (2.18) and Bernoulli equation (2.17)

using Dirichlet boundary conditions. For example, one could initialize x with a vector

satisfying these boundary conditions, and updating it using

xn+1 − xn = −




∇a∇aL 0

0 I




−1 


∇aL

0



, (3.14)

where we have the collected the degrees of freedom ξd and ρd into a single vector x =

(xa,xb), where xb are the values associated to ξ at the boundary points, and xa is everything

else.

While in principle, one could compute how the solution changes as one varies the values

of the boundary conditions, searching for a resulting global solution without the short

wavelength oscillations turned out to be difficult and inefficient.

Another method we tried was to take the surface integral into account (equation (3.13)),

and instead solve for

δL − B · δξ = 0,

B = f(n̂ ·∇ξ) on ∂D.

In the discretized version, we evaluate quantities at the half-integer boundary point by Taylor

expansion. Note that, while the boundary term B itself depends on the interior grid points,

the expression for δξ evaluated on the boundary depends only on the boundary points.

We are now essentially solving the system

∇L− B = 0, (3.15)
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where we have dropped the subscript d, as clearly the numerical method acts on discrete

quantities. Equation (3.15) can be visualized as the following matrix equation:

find x =




xa

xb




such that




∇aL

∇bL − Bb







xa

xb




= 0 (3.16)

To solve this system, we employ Newton’s method. We start with an initial guess x0 and

update it as follows:

xn+1 − xn = −




∇a∇aL ∇b∇aL

∇a∇bL −∇aBb ∇b∇bL −∇bBb




−1 


∇aL

∇bL − Bb



. (3.17)

This is essentially an attempt to discretize and solve a formally underdetermined system,

and therefore should have as many solutions as there are potential boundary conditions. The

space of possible Dirichlet boundary conditions is a |b|-dimensional space, where |b| is the

number of grid points on the boundary. This freedom in the solution for x, in theory, should

correspond to a |b|-dimensional null space of the matrix of second derivatives. While this

matrix might not be exactly singular (as it is a discretized approximation of equation (3.15)),

simply inverting it as in equation (3.17) frequently inhibits convergence (as it is indeed

ill-conditioned).

An apparently straightforward solution to this problem would be to consider a pseu-

doinverse with a cutoff for the eigenvalues that renders these unconstrained directions as

part of the null space. However, choosing an appropriate cutoff proved to be tricky, as the
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eigenvalues associated with these unconstrained directions are not well-separated from the

rest of the spectrum.

Instead, our final approach aims to simultaneously:

1. Converge towards a solution for ∇aL(x) = 0,

2. Allow the boundary values to vary freely, and

3. Iteratively “nudge” the obtained solution towards one that is smooth, ie, without the

undesired short wavelength oscillations.

3.3.4 Obtaining smooth solutions

To this end, we construct the matrix equation that allows for the entire x to vary, while only

attempting to satisfy the equations∇aL(x) = 0, ie,

xn+1 − xn = −




∇a∇aL ∇b∇aL

0 0




† 


∇aL

0



, (3.18)

where now the pseudoinverse must be taken, as the matrix is explicitly not full rank.

To move the solution towards one with our desired properties, we must character-

ize the directions associated with the extra degrees of freedom, namely those such that

∇aL(x + δx) = O(|δx|2). To this end, we perform a singular value decomposition of this

matrix, ie, (∇∇L) = UΣV, where U and V are unitary square matrices, and Σ is the

diagonal matrix of singular values. The rows of V form an orthonormal basis for x, and

the bottom rows, V
b
, correspond precisely to the linearized null space, ie, the directions we
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want for δx:




∇a∇aL ∇b∇aL

0 0




=




U
a

0

0 0







Σ
a

0

0 0







V
a

V
b



.

(3.19)

We can drop the unnecessary zero entries, ie



∇a∇aL ∇b∇aL




=




U
a







Σ
a

0







V
a

V
b



. (3.20)

The pseudoinverse can now be expressed as:



∇a∇aL ∇b∇aL




†

=




V>
a

V>
b







Σ−1

a

0







U>
a



.

(3.21)
In particular, each iteration of the numerical scheme consists of two steps:

1. A step that reduces the error in the solution, and

2. A step that reduces the oscillatory nature of the solution.

The first step simply uses the pseudoinverse of the (now rectangular) matrix of sec-
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ond derivatives of L to perform a Newton step:

xn+1 − xn = −



∇a∇aL ∇b∇aL




† 

∇aL



. (3.22)

In general, this update reduces the error of the solution. However, in the solar regime,

short-wavelength oscillations can appear, which we fix in the second step.

The second step adds to the solution a linear combination of the rows of V associated

with the boundary:

xn+1 → xn+1 + c>V
b
. (3.23)

The precise values of the coefficients c are chosen to minimize a cost function that quantifies

the amount of short-wavelength oscillations, which we choose to be

S[ξ] =

∫

D

(
∇2ξ

)2
dV. (3.24)

Our motivation for choosing this cost function is twofold. First, it provides an intuitive

measure of smoothness, strongly penalizing higher frequencies. Second, it is numerically

convenient as it can be minimized exactly (since it is a quadratic function of c).

We solve this minimization problem by first constructing a discrete version of the

∇2 operator, a matrix N such that Nx is a vector of the finite-difference approximations

to ∇2ξ at each grid point. Then the coefficients c (equation (3.23)) that minimize S[ξ]

(equation (3.24)) are given by

c = −
(
V
b
N
>
NV

>
b

)−1 (
V
b
N
>
Nxn+1

)
. (3.25)
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While the smoothed solution xn+1 in general does not satisfy∇aL = 0, repeating these

two steps iteratively converges on a smooth solution that does (to within some desired level

of accuracy).

3.3.5 Validation of the numerical methods

Figure 3.1 shows a numerical validation of our method, demonstrating that it converges to

the correct solution with the appropriate scaling.
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Figure 3.1: Validation of numerical method. Curves represent error in the PDE at several
fixed representative points in the interior. These figures demonstrate that error decreases
quadratically as a function of resolution, as desired. Left: Grid convergence. We consider
the value of ξ at 12 fixed points in a global equilibrium simulation as a function of the grid
resolution, using Dirichlet boundary conditions at the axis, reflecting boundary conditions at
the equator, and Neumann boundary conditions for the top and bottom. We consider 4 × 4,
7×7, 13×13, 25×25, and compared them to the values obtained for a 49×49 grid. Right:
Solution consistency. To verify that the solutions are indeed solving the correct equation,
we measure the error in equation (2.18) using an alternative method. Namely, we employ a
finite-difference approximation to the differential operator.

Our numerical method will now serve as director of the third and final trilogy in this

thesis: the Convection Zone (Chapter 4), the Near Surface Shear Layer (Chapter 5), and the

Tachocline (Chapter 6).

37



Chapter 4

The Convection Zone

Something so complicated, like a cloud,

so unstable, so varying,

should have a simple rule behind it.

—– Benoit Mandelbrot

In this chapter, we describe how the G–S formalism can be used to model the solar convection

zone (CZ). We start with an overview of basic observational characteristics of the CZ, and

review models that attempt to explain these features (Section 4.1). We then describe a

simplified analytic model by S.A. Balbus, which is based on the principle of thermal

wind balance (Section 4.2). We then show how our principled approach suggests a slight

modification to the Balbus Ansatz, and produces similar agreement with observations

(Sections 4.4, 4.5, and 4.6).
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4.1 Characteristics of the convection zone

4.1.1 Basic properties

Radiative diffusion is an efficient mechanism of energy transport in the hot, dense core of

the Sun. As a result, the entropy increases as a function of radius, and this radiative interior

is convectively stable. However, as the temperature decreases with radius, the efficiency of

radiative diffusion also decreases, and the entropy gradient reverses, seeding the convective

instability as per the Schwarzschild criterion [82]. The efficient mixing of fluid elements

causes the entropy profile to be essentially flat in this convection zone, with only a small

superadiabatic profile in dynamic equilibrium with convective energy transport. Basic 1D

models of radial energy transport throughout the solar interior predict an outer convective

layer for stars with ∼ 0.5− 1.5 solar masses [50]. While the approximate location of the

base of the convection zone can be estimated via such models, it was not until spherical

helioseismology (see Section 1.4.1) that its depth was accurately measured to be ∼ 70% of

the solar radius.

These 1D models of radial energy transport treat convection as a transport process that

is essentially instantaneous compared to the global timescale of energy transport. Hence,

they do not offer predictions about the characteristics of this convection. However, a

loose understanding of the scaling of the convective velocities can be obtained via mixing

length theory (MLT) [62]. MLT assumes a marginally superadiabatic background profile in

hydrostatic equilibrium. An element of fluid at height z that is slightly displaced is assumed

to rise some fraction α of the pressure scale height Hp = −dz/d ln p(z) before dissipating

its energy content. Equating the kinetic energy of this element to the work done on it by the

buoyancy force gives a characteristic speed, and therefore an approximate convective flux

Fc. The resulting scaling of the velocity is given by vr ∼ O((Fc/ρ)1/3).
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However, observations from local helioseismology suggest that MLT overestimates these

velocities, especially in the deeper portions of the CZ [49] (see Table 4.1.1). Moreover,

simulations of the full CZ generally exhibit substantially higher convective velocities at large

scales [49]. This discrepancy between the observations and models is commonly known in

the literature as the “convective conundrum” [67]. Indeed, these global simulations should

be taken with a grain of salt as they usually cannot operate in the correct regime. Not only is

the correct Reynolds number orders of magnitude smaller than is currently accessible, but

they also often use a modified luminosity and rotation rate to obtain solar-like profiles [65].

Quantity Base Surface

Radius 5 · 108 m 7 · 108 m

Mass density 200 kg m−3 1.0 kg m−3

Sound speed 2.3 · 105 m s−1 8.0 · 104 m s−1

Toroidal field . 300 kG ≤ 60 kG

Poloidal field ∼ 10 G (?) ∼ 10 G

Toroidal flow . 1300 m s−1 . 2000 m s−1

Poloidal flow . 1 m s−1 (?) ∼ 10− 20 m s−1

Convective velocities ∼ 10 m s−1 (?) ∼ 1000 m s−1 (?)

Plasma beta & 105 & 103

Toroidal Alfvénic Mach number ∼ O(1) & O(10)

Poloidal Alfvénic Mach number ∼ O(1) (?) ∼ O(102) (?)

Rossby number < O(1) & O(1)

4.1.2 Differential rotation: fast equator, slow poles

Gastine et al. [32] showed that rotating stratified flows generally operate in two broad

regimes: fast rotators have Coriolis forces that dominate over buoyancy, while slow rotators

have the opposite. Fast rotators generally have a prograde equatorial flow, while slow
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rotators have a retrograde equatorial flow. As the solar equator rotates faster than its poles,

the Sun is likely operating in the fast-rotator regime. However, it is somewhat special in the

sense that it is rather close to this transition. Moreover, as the Sun is continually slowing its

rotation via magnetic breaking, there is even the possibility of it being in hysteresis between

these two flow regimes.

The mechanism for equatorial acceleration is generally thought to be due to hydro-

dynamic properties, namely the Reynolds stresses associated with Coriolis forces act-

ing upon convective motions (see [16] for a physically intuitive overview). Essentially,

rotationally-constrained convection tends to produce rotating columns of fluid aligned with

the axis. Inward displacements of these columns in a conical shell cause the column to

lengthen and therefore become narrower, giving them an additional prograde rotation via

conservation of angular momentum. Conversely, outward displacements have the opposite

effect. The effect of these changes to rotation on neighboring columns serves to propagate

these perturbations in the prograde direction, an effect known as Rossby waves. When the

boundary is spherical, these Rossby waves propagate faster further from the axis, seeding

the initial prograde equatorial flow. This is further reinforced by the mean flow instability,

wherein the flow shears the convective structures, leading to Reynolds stresses that transport

angular momentum outward. In slow rotators, the mechanism of differential rotation is

relatively simpler: the strong convection effectively mixes angular momentum, yielding

faster rotation near the axis.

4.1.3 Differential rotation: tilted isorotation contours

In the bulk of the CZ (ie, away from its boundaries), the isorotation contours are tilted

radially. This deviation from the cylindrical rotation of Taylor–Proudman balance requires

a source of azimuthal vorticity, and the commonly posited source is baroclinic forcing,
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as it requires the poles to be only ∼ 10 K warmer than the equator to match observations.

Although this gradient cannot be directly measured, some simulations have managed to

obtain solar-like tilted contours through this effect, such as the 2D mean-field hydrodynamic

models of Kitchatinov & Rüdiger [59] and Rempel [78]. The 3D simulations of Miesch

[66] also found a similar tilting of contours, albeit with an imposed entropy gradient at the

base of the CZ. However, most 3D simulations have found rotation profiles closer to the

Taylor–Proudman state than observations [27].

4.1.4 Meridional circulation

The meridional (poloidal) flow is relatively less constrained by observations; the only consen-

sus seems to be that there is a ∼ 20 m s−1 poleward flow at mid-latitudes at the surface [77].

As the meridional flow is not thought to penetrate the radiative interior [35], this observation

is often extrapolated to suggest a single recirculating cell in each of the north and south

hemispheres, with an equatorward return flow near the base of the CZ. Mean-field models

of the solar cycle (eg, Babcock—Leighton) frequently use such a profile [24]. However,

in Zhao et al. [107], local helioseismological measurements were found to implicate an

equatorward return flow closer to the surface, indicating a more complex topology than

previously assumed. The large-scale magnetohydrodynamic (MHD) simulations in Passos

et al. [73, 74, 75] corroborated this picture, suggesting a multicelled pattern with strong

axial alignment near the equator.

4.2 Thermal wind balance and the Balbus model

In an attempt to find simple closed form solutions for the CZ rotation, Balbus [6] found strik-

ingly good agreement with observations using a very simple model. Its two ingredients are:

differential rotation in thermal wind balance (TWB; ie, baroclinic forcing in the hydrostatic
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limit), and the assumption that the aspherical part of the entropy is constant along isorotation

contours. Indeed, when differential rotation is observed in solar simulations, it appears to be

in dominant balance with a latitudinal entropy gradient throughout the bulk of the CZ [75].

The second assumption, however, is more questionable, although possible mechanisms

for this alignment were posited by Balbus et al. [7, 8, 9, 10], including a marginally stable

magnetobaroclinic mode, and a dynamic alignment of convective structures due to rotational

shear.

4.3 The Grad–Shafranov formalism

as a principled simplified model

Our framework is motivated by the observation that a similar alignment of contours naturally

appears in the solution to axisymmetric ideal MHD equilibrium with flows. The equa-

tion governing this system, generalizing the standard Grad–Shafranov (G–S) approach for

static plasmas, was derived by several authors (eg, Hameiri [48], Lovelace et al. [63], and

Goedbloed & Lifschitz [37]). In this framework, certain quantities are flux/stream functions,

ie, they are constant along the surfaces traced out by the poloidal field and flow.

For the assumed closure of adiabatic flows, entropy is one such stream function. In

the limit where the poloidal field is strong compared to poloidal flow, toroidal rotation is

also a stream function. This would seem to imply Balbus’s assumption of aligned entropy

and isorotation contours. However, observations of the mean field and flow at the solar

surface suggest that the CZ is in the opposite limit, where the poloidal flow dominates over

the poloidal field. In this limit, angular momentum replaces rotation as a stream function,

implying that the natural equilibrium prescription is for entropy to align instead with angular

momentum. This case was also considered by Balbus in [6], but was discarded, as their
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initial results did not qualitatively match helioseismic observations. However, here we

demonstrate that the freedom in choosing the form of the stream functions in the generalized

G–S framework allows the theoretical model to match more closely with observations.

4.4 Comparison with Balbus model

The first assumption in Balbus’ model [6] is that of TWB. It considers a rotating fluid

with a background state of gravitationally dominated hydrostatic balance. For the case of

a baroclinic fluid, the Taylor–Proudman theorem states that this rotation profile must be

cylindrical, ie, with isorotation contours that align with the axis. TWB considers the case

where deviations from the Taylor–Proudman profile are caused by baroclinic forcing (ie,

vorticity due to misaligned density and pressure gradients).

We now show that we can recover the TWB equation from the G–S equation in the

hydrodynamic limit by neglecting the poloidal flow. In this limit, the PDE (2.18) and

Bernoulli equation (2.17) become the following:

Ł2′

2λ2
+

1

γ − 1

p

ρ
σ′ −H ′ = 0, (4.1)

Ł2

2λ2
+

γ

γ − 1

p

ρ
+ Φ−H = 0, (4.2)

where Ł ≡ L/χ′ = Ωλ2, Ω ≡ vφ/λ, and primes denote partial derivatives with respect to ξ.

We remark that Ł is simply the specific angular momentum, and Ω is the rotation rate.
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We take the derivative of equations (4.1) and (4.2) along the stream surfaces, ie, in the

direction of X ≡ ∇φ×∇ξ. To simplify the expressions, note the following:

X·∇λ2 = 2
∂ξ

∂z
,

X·∇r = − 1

λr

∂ξ

∂θ
,

X·∇f = 0 ∀f ∈ {ξ, ψ, χ, F, L,Ł, σ,H} .

Then, we evaluate X ·∇ of equation (4.2):

γ

γ − 1
X ·∇p

ρ
= −X ·∇ Ł2

2λ2
−X ·∇Φ + X ·∇H

=
Ł2

λ4

∂ξ

∂z
+

g

λr

∂ξ

∂θ
, (4.3)

where g(r) = dΦ(r)/dr is the gravitational force.

In the hydrostatic limit, gravity dominates centrifugal terms; assuming ∂ξ/∂z . ∂ξ/∂θ,

the first term on the right side of equation (4.3) is O(λΩ2/g)� 1 compared to the second.

The TWB equation is obtained by substituting equation (4.3) into X ·∇ of equation (4.1):

X ·∇ Ł2′

2λ2
= X ·∇H ′ − 1

γ − 1
X ·∇pσ

′

ρ
(4.4)

⇒ ∂Ω2

∂z
=

g

γλr

∂σ

∂θ

[
1 +O

(
λΩ2

g

)]
. (4.5)

Hence, we have derived the TWB equation by taking the appropriate limit of the HD G–S

equation.

Note that there is no reference to stream surfaces in equation (4.5). Indeed, the case

of zero poloidal flow is a singular limit, as the equations that constrained Ł and σ to be

constant along stream surfaces (eg, v ·∇σ = 0) are trivially satisfied. Thus, the two scalar
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variables, Ω and σ, are only required to satisfy the single equation (4.5), and the problem is

underdetermined.

In [6], Balbus considered closing this TWB model by assuming the alignment of rotation

and entropy contours (ie, σ = σ (Ω)), thus obtaining a system where a choice of the rotation

and entropy on the surface can be uniquely extrapolated into the interior. This assumption

is strikingly similar to the appearance of stream surfaces in the G–S formalism (when

|vp| > 0); since Ł and σ are both functions of ξ, this implies that σ = σ (Ł).

It should be noted that Balbus [6] considered this σ–Ł alignment as well, but subsequently

focused only on the σ–Ω assumption due to a perceived stronger qualitative agreement with

CZ observations. However, as shown in Figure 4.1, this apparent advantage arises from the

difference in the choice of the entropy profile at the surface, not from the effect of the σ–Ω

alignment. When the two choices of entropy closure are put on equal footing (ie, with the

same rotation and entropy at the surface), we find that both do equally well in capturing the

characteristic rotation in the CZ.

Thus, we consider this relatively unexplored σ–Ł alignment as the natural limit of

axisymmetric fluid equilibrium with vanishing poloidal flows, and using this framework, we

evaluate the effects of including a nonzero poloidal flow on the rotation profile.
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4 GUNDERSON ET AL.Solar isorotational contours 2059

Figure 1. Contour plot of !(r , θ ) in solar interior, using surface fit of Ulrich et al. (1988). SCZ boundaries marked by thick black curves. Calculation based
on equations (20) and characteristic equations of isorotational contours, (22). B/r3

⊙ = 0.5 (left-hand panel), 0.6 (right-hand panel).

the true high-latitude isotachs show stronger curvature, following
spherical shells, before turning upwards. But, the overall trend of
the isotachs being predominantly quasi-spherical at high latitudes,
increasingly radial at mid-latitudes and axial at small latitudes is
unmistakable. Moreover, fitting our solution to the observed sur-
face data, while convenient, is unlikely to show off its best form:
thermal wind balance probably breaks down near the solar surface
(Thompson et al. 2003). Given the simplicity of our direct approach,
the qualitative agreement is both striking and encouraging.

The iso-angular momentum contours of equation (18) can also
be used to construct an explicit solution. In this case, the surface
angular momentum l fit is

l(cos2 θ0) = 2�r⊙2 sin2 θ0
�
451.5 − 65.3 cos2 θ0 − 66.7 cos4 θ0

�
.

(24)

Instead of equation (22), we have

cos θ 2
0 = 1 − sin2 θ0 = 1 −

�
1
x2

+ r⊙Bl

✓
1 − 1

ϖ

◆�−1

. (25)

Substitution of (25) into (24) generates the full solution for the
specific angular momentum l(r , θ ), and the angular velocity solution
follows immediately from

!(cos2 θ0) = (2�/x2) sin2 θ0
�
451.5 − 65.3 cos2 θ0 − 66.7 cos4 θ0

�
.

(26)

In Fig. 2, we show two representative diagrams of the isorota-
tional contours taken from this alternative angular momentum based
approach. In general, the contours are too cylindrical, to some ex-
tent exhibiting the same syndrome often seen in numerical SCZ
simulations. The contrast between Figs 1 and 2 is very apparent.
There seems to be a real linkage between S and !, and it matters
very much that the coupling is between S and !, not S and l. It is
possible that the refractory nature of the cylindrical contours of the
simulations is due to an S − l coupling that remains too strong, as
noted in Section 2.3. While it is possible that this may be cured by
a more highly resolved treatment of the turbulent fluid, it is also
possible that magnetic fields may be playing a non-negligible role,
enforcing an S − ! coupling by field line tethering of the fluid
elements. We pursue this possibility in Section 3.

In the remainder of the paper, we focus exclusively on our original
S − ! solution.

2.5 Tightening the contours

By allowing the B parameter to vary from one isotach to an-
other, the isorotational contours we have found can become more
tightly spaced near the poles. In this sense, our solutions admit, but
do not demand, something reminiscent of a tachoclinic structure.
Equation (14) may be written:

r = B/A

1 − (R2/A)
. (27)

Figure 2. Contour plot of !(r , θ ) in solar interior, based on counter aligned entropy and angular momentum gradients, using surface fit of Ulrich et al.
(1988). SCZ boundaries marked by thick black curves. Calculation based on equation (26) and characteristic equation of iso-angular momentum contours,
(24). r⊙Bl2 = 0.2 (left-hand panel), 0.5 (right-hand panel).
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Figure 1. Comparison of rotation profiles of TWB solutions in Balbus (2009) with our results from Grad–Shafranov theory. Top left: TWB
(with the �–⌦ alignment) from Balbus (2009). Top right: TWB (with the �–L alignment) from Balbus (2009). In both cases, rotation at
the surface was chosen to match solar observations, but the functional form of the entropy is prescribed as � / -⌦2 and � / -L2 = -⌦2�4,
respectively. The latter function rapidly increases at larger cylindrical radius (�), resulting in a � � lack of tilting of contours at mid to high
latitudes and overly tilted contours near the equator. Bottom: TWB solutions from our G–S theory (i.e., with �–L alignment), where rotation
and entropy at the surface are chosen to match those above. Note that the choice of entropy alignment in the CZ matters much less than the
choice of entropy profile at the surface.

the case where deviations from the Taylor–Proudman profile
are caused by baroclinic forcing (i.e., vorticity due to
misaligned density and pressure gradients).

In this section, we show that we can recover the TWB
equation from the HD G–S equation by neglecting the
poloidal flow. In this limit, the PDE (9) and Bernoulli
equation (8) become the following:

L20

2�2 +
1

� - 1
p
⇢
�0 - H 0 = 0, (11)

L2

2�2 +
�

� - 1
p
⇢

+ G - H = 0, (12)

where L2 = ⌦2�4 and ⌦⌘ v�
� .

We take the derivative of Equations (11) and (12) along
the stream surfaces, i.e., in the direction of

¯
X ⌘ r̄�⇥r̄�.

To simplify the expressions, note the following:

¯
X·r̄�2 = 2

@�

@z
,

¯
X·r̄r = -

1
�r
@�

@✓
,

¯
X·r̄ f = 0 8 f 2 {�,L,�,H} .

Then, we evaluate
¯
X·r̄ of Equation (12):

�

� - 1 ¯
X·r̄ p

⇢
= -

¯
X·r̄ L2

2�2 -
¯
X·r̄G +

¯
X·r̄H

=
L2

�4

@�

@z
+

g
�r
@�

@✓
, (13)

where g(r) = dG(r)
dr is the gravitational force.

In the hydrostatic limit, gravity dominates centrifugal
terms; assuming @�

@z . @�
@✓ , the first term on the right side

of Equation (13) is O
⇣
�⌦2

g

⌘
⌧ 1 compared to the second.

The TWB equation is obtained by substituting Equation (13)
into

¯
X·r̄ of Equation (11):

¯
X·r̄ L20

2�2 =
¯
X·r̄H 0 -

1
� - 1 ¯

X·r̄ p�0

⇢

@⌦2

@z
=

g
��r

@�

@✓

⇣
1 +O

⇣
�⌦2

g

⌘⌘
. (14)

Hence, we have derived the TWB equation by taking the
appropriate limit of the G–S equation.

Note that there is no reference to stream surfaces in
the final expression in Equation (14). Indeed, the case of

Figure 4.1: The choice of latitudinal entropy gradient is much more relevant than the
choice of entropy alignment for modeling the CZ. Top figures show rotation profiles of
TWB solutions from Balbus [6]. Top left: Using σ–Ω alignment. Top right: Using σ–Ł
alignment. In both cases, rotation at the surface was chosen to match solar observations,
but the functional form of the entropy is prescribed as σ ∝ −Ω2 and σ ∝ −Ł2 = −Ω2λ4,
respectively. The gradient of the latter function occurs at a larger cylindrical radius, λ,
resulting in a lack of tilting of contours at mid to high latitudes and overly tilted contours
near the equator. Bottom figures shows our results from Grad–Shafranov theory (ie, both
with the σ–Ł alignment), where rotation and entropy at the surface are chosen to match
those immediately above.
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4.5 Comparison with observations

We have demonstrated that we can recover the qualitative features of the CZ rotation profile

with our G–S model, but what about quantitatively? In [7], Balbus considered a more

general form of rotation and entropy as a function of latitude, fitting the profiles to match

the value and angle of the isorotation contours in the bulk of the CZ, and obtained a good

agreement away from the surface and tachocline. Likewise, by exploiting the freedom in the

form of the stream functions, we obtain an equally striking fit to helioseismology data, as

shown in Figure 4.2.

Rotation and Convection in the Sun 177

Figure 1. Constant ! contours (7) of the TWE (2) (white curves) plotted on top of (black) isorotation contours from helioseismology data (GONG results
courtesy of R. Howe). Blue contour is the bottom edge of the convective zone. Scale is in solar radii. Away from the tachocline and outer surface layers, the
match is excellent. See the text for further details.

isorotational contours can be found throughout the bulk of this
region. In this current paper, we will argue that there may well be a
generic hydrodynamical mechanism that explains both the observed
helioseismology results and the numerical simulations.

An outline of our paper is as follows. In Section 2, we present
an improved fit between an explicit solution of the TWE and the
helioseismology data. We also introduce, following MBT06, the
concept of ‘residual entropy’: the average entropy profile remaining
after an underlying radial profile has been removed. Arguments are
presented which suggest that convecting fluid elements will tend
to move in surfaces of constant residual entropy. In Section 3, we
further argue that the same fluid elements will also tend to move in
surfaces of constant angular velocity and that these surfaces must
therefore coincide with those of residual entropy. The coincidence
of surfaces of residual entropy and angular velocity is necessary
in our approach to obtain a solution of the TWE. In Section 4, we
conclude with an evaluation and discussion of the relative merits of
the hydrodynamical and magnetohydrodynamical approaches.

2 A S I M P L E M O D E L FO R T H E SO L A R
I S O ROTAT I O N C O N TO U R S

2.1 Preliminaries

2.1.1 Coordinates and notation

Let (R, φ, z) be a standard cylindrical coordinate system and (r ,
θ , φ) a standard spherical coordinate system. We consider an equi-
librium flow in a state of azimuthal rotation in which the angular
velocity ! is assumed to be independent of φ, but may depend upon
R and z. The background entropy profile S is also a function of R
and z. Our notation for the other fluid variables is standard: v is
the velocity, P is the gas pressure and ρ is the mass density. Unless
otherwise stated, all thermodynamic variables are understood to be
φ-independent azimuthal averages. The velocity v will in general
contain (convective) fluctuating components; any azimuthal aver-
aging will be treated explicitly. The SCZ gravitational field g is to
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Figure 4.2: Models of thermal wind balance can replicate observations in the CZ (away
from the surface and the tachocline). Left: Best fit from Balbus [7] is shown in white,
and helioseismic data in black. Right: Best fit from our G–S model is shown in white, and
data helioseismic from [55] in black.

4.6 Incorporating residual entropy

In [7], Balbus also introduced a slightly more general σ–Ω connection by dividing the

entropy into a spherically symmetric part and an aspherical part, positing that the latter
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“residual entropy” aligns with rotation, giving σ = σr (r) + σΩ (Ω). Their motivations were

twofold: first is the mathematically convenient fact that TWB (equation (4.5)) is insensitive

to this radial entropy profile, so the form of their solution is unchanged; and second is that

convection in the absence of rotation would be in dynamic equilibrium with a superadiabatic

radial entropy gradient, so the aspherical effects of rotation should be considered with

respect to this spherically symmetric state. Indeed, simulations in [66] found that isorotation

contours are better aligned with this residual entropy than with the total entropy. We

now demonstrate how a similar entropy assumption can fit into the framework of the G–S

equation.

In the derivation of equations (2.17) and (2.18), the assumption of stationary adiabatic

flows implies that entropy is a stream function v ·∇σ = 0⇒ σ = σ (ξ). This assumption

clearly does not hold in the Sun, where heat transport is dominated by radiation and

turbulent convection (instead of mean-flow advection). However, our motivations for using

this adiabatic closure are likewise twofold: theoretical, because such a closure allows one

to use the techniques of global MHD equilibrium and stability; and practical, because the

particular choice of closure matters much less than the overall latitudinal entropy profile (a

free parameter in both models).

Yet, as the radial entropy stratification is not small compared to the putative latitudinal

gradient, it behooves us to separate out a spherically symmetric component. Thus, in the

spirit of Balbus [7], we assume the following form for the entropy:

σ = 〈σ〉+ σr (r) + σξ, v ·∇σξ = 0, (4.6)

so that the residual entropy, σξ = σξ (ξ), is a stream function.

We now trace the effects of this more general entropy assumption on the derivation of

the Bernoulli equation ((2.17)) and G–S PDE ((2.18)). For simplicity, we will outline the
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results for the HD limit, as the results are the same for the general MHD case. The pressure

term of equation (2.3) in the direction of v becomes

ρ−1X ·∇p = ρ−1X ·∇
[
e〈σ〉+σr+σξργ

]

= − 1

γ − 1

p

ρ
X ·∇σr + X ·∇

(
γ

γ − 1

p

ρ

)
.

The second term here yields the same entropy term as in equation (2.17), while the first term

can be approximately absorbed into a modified radial gravitational potential:

1

2

χ′2 |∇ξ|2
ρ2λ2

+
1

2

L2

χ′2λ2
+
γργ−1

γ − 1
eσ +Gm −H

︸ ︷︷ ︸
modified Bernoulli equation

=

∫
δT

γ − 1
X ·∇σr

dl

|X|︸ ︷︷ ︸
O(σrδT )

, (4.7)

where the integral is taken along the relevant stream surface, the modified gravitational

potential is

Gm (r) = G(r)− 1

γ − 1

∫ r p0

ρ0

dσr
dr

dr, (4.8)

and the temperature perturbation is δT ≡ p/ρ− p0/ρ0. The quantities p0 and ρ0 are the

background radial pressure and density profiles, which satisfy hydrostatic balance:

ρ0 (r) =

(
γ − 1

γ

〈H〉 −G(r)

e〈σ〉+σr(r)

) 1
γ−1

, (4.9)

p0 (r) = ργ0e
〈σ〉+σr , (4.10)

where angled brackets denote a mean value (note that H − 〈H〉 � 〈H〉 in the solar case).

In obtaining the PDE ((2.18)), the pressure and gravity terms in the momentum equa-

tion ((2.3)) are canceled by terms from ρ∇ of equation (2.17). Consider the corresponding
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terms in ρ∇ of equation (4.7):

ρ∇H = ρ∇Gm +
γ

γ − 1
ρ∇
(
p

ρ

)
+ · · ·

= ρ∇G+∇p
︸ ︷︷ ︸

cancels with equation (2.3)

+
1

γ − 1
p∇σξ

︸ ︷︷ ︸
term in PDE ((2.18))

+
1

γ − 1
p
δT

T
∇σr

︸ ︷︷ ︸
O
(
σr

δT
T
p
)

+ · · · .

Thus, both the PDE and the Bernoulli equation are changed by terms of size O(σrδT/T ),

which is much smaller than the dominant balance of sizeO(σξ) between differential rotation

and residual entropy. Indeed, the radial entropy profile is only weakly superadiabatic in

the CZ; from mixing-length arguments, the change in entropy over a pressure scale height

is ∼ 10−7 at the base and ∼ 10−2 at ∼ 0.5% below the surface [62], so σξ . σr � 1. If

differential rotation is driven primarily by baroclinic forcing, then δT/T ∼ σξ � 1, so this

O(σrδT/T ) term can be dropped. However, this term may not be negligible in the radiative

interior (where σr is strongly subadiabatic) or at the surface (where ρ→ 0). Indeed, both

our model (at least as is, but see Chapters 5 and 6) and that of Balbus break down in these

regions.

What have we gained by demonstrating the insensitivity of our model to a radial entropy

profile? Using data from the 3D CZ simulations of Miesch et al. [66], Balbus [7] subtracted

a particular choice of radial profile to show that the residual entropy can be made to align

with rotation. Here, we show that a different choice can be made to align it with angular

momentum. To demonstrate this, we add a radial profile that aligns our model’s total

entropy with rotation, as seen in Figure 4.3. Thus, by subtracting this radial profile, Balbus’s

relationship between rotation and residual entropy can be transformed into a relationship

between angular momentum and a different choice of residual entropy.
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Figure 4.3: The freedom afforded by the choice of radial entropy allows our model
to mimic the σ–Ω alignment. Left: Isorotation contours. Right: Entropy contours
(σ = σr (r) + σξ (ξ)).

4.7 Discussion

In this chapter, we employed the hydrodynamic limit of the Grad–Shafranov equation to

obtain gravitationally dominated equilibrium states with a solar-like differential rotation.

In this limit, the surfaces of constant entropy align with those of angular momentum. We

compared results from our model to those with the entropy–rotation alignment of Balbus [6],

finding an equally good agreement with helioseismic observations.

Similar to Balbus [7], we demonstrated that it is possible to introduce a small radial

entropy gradient while leaving the form of the equilibrium equations unchanged to leading

order. With the freedom afforded by this arbitrary radial profile, we showed that an aspherical

entropy aligned with angular momentum can be changed into one that is nearly aligned

with rotation. Thus, the numerical simulations that demonstrate an alignment of aspherical

entropy with rotation [7] could just as well support an alignment with angular momentum

by using a different choice of spherical entropy gradient. Compared to the superadiabatic
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gradient driving convection, these choices of spherical entropy gradient become comparable

only near the base.
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Chapter 5

The Near Surface Shear Layer

In this chapter, we consider the inclusion of poloidal flow in the generalized G–S equation

(still in the hydrodynamic limit). While this modification does not introduce any qualitative

changes in our results for the rotation profile of the convection zone, the limit of vanishing

density at the surface leads to a slowing of rotation at the surface. This decrease in surface

rotation found in our model qualitatively similar to that found in the NSSL.

5.1 Characteristics of the NSSL

The first evidence for the NSSL was the observation that emerging active regions rotate at a

rate faster than that of the surrounding photosphere [30]. The conventional explanation for

its existence is the effective mixing of angular momentum due to strong convective flows in

the outer layers [21, 68].

In slowly rotating objects, the radial motion of convection effectively advects angular

momentum radially inward [68]. In contrast, in strongly rotating objects, Coriolis forces

constrain these convective motions to form coherent structures aligned with the rotation
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axis, resulting in Reynolds stresses that transport angular momentum outward (see [16] and

Section 4.1.2). It appears that the relevant parameter is the convective Rossby number, ie,

the ratio of the rotation period and the convective timescale, Ro = k|vc|/2Ω, where k is

the inverse lengthscale of convection, |vc| is the characteristic velocity of convection, and

Ω is the bulk rotation rate. Indeed, Gastine et al. [32] conducted a large parameter scan

of rotating convection simulations, finding that this convective Rossby number is a good

indicator of whether an object will exhibit solar-like (fast equator and slow poles, when

Ro . 1) or anti-solar (slow equator and fast poles, when Ro & 1) rotation.

However, the same object can exhibit both types of rotation. For example, while the

majority of the solar interior likely exhibits rotationally-constrained convection (Ro . 1),

the outer layers probably operate in the opposite regime. Indeed, as one approaches the

surface of the Sun, relative density and pressure gradients become more pronounced, and

convection becomes more vigorous, reaching velocities on the order of the sound speed.

As convection is no longer rotationally-constrained, conservation of angular momentum

suggests a decrease in rotation rate as a function of cylindrical radius in these outer layers,

as is observed in the solar data and recovered in high-resolution simulations of convection

in this region [54].

We now extend our equilibrium description of the solar rotation profile by including a

weak poloidal flow, considering in particular its effects on the equilibrium close to the solar

surface.

5.2 Robustness to weak poloidal flows

In Chapter 4, we neglected the terms in equation (2.18) representing the effects of poloidal

flows (or, more precisely, considered the |vp| → 0 limit), leading to an algebraic equation

that uniquely determined the solution. Thus, there was no need to specify boundary condi-
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tions. However, when poloidal terms are included, the resulting PDE has a continuum of

possible solutions, corresponding to different choices of boundary conditions.

To qualitatively understand the effect of a nonzero poloidal flow, we split the PDE (2.18)

into a “differential term” ∆?, which contains all the terms that depend on spatial derivatives

of ξ, and an “algebraic term” A, which contains everything else:

∇ ·
[(
ψ′2 −

χ′2

ρ

) ∇ξ
λ2

]
− 1

2

(
ψ′2 −

χ′2

ρ

)′ |∇ξ|2
λ2

︸ ︷︷ ︸
“differential term” ∆?[ξ]

+

[(
L2

2λ2
+
χ′LF

ψ′
+
ρλ2F 2

2

)/(
ψ′2 −

χ′2

ρ

)
− 1

γ − 1
ργeσ + ρH

]′

︸ ︷︷ ︸
“algebraic term” A(ξ, ρ, λ)

= 0. (5.1)

In the bulk of the CZ, we expect the “differential term” to be about v2
p/v

2
φ . 10−4

times smaller than the “algebraic term”. We then linearize equation (5.1) about the

TWB solution ξTWB, satisfying A(ξTWB, ρ0, λ) = 0, and search for time-independent

(ω = 0) perturbations, giving a family of nearby equilibria.

First, we fix a background hydrostatic density profile, ρ0(r). We consider a nearby

smooth solution, ξ0, that satisfies equation (5.1),

∆?[ξ0] + A(ξ0, ρ0, λ) = 0. (5.2)

Because the scale length of ξTWB is similar to the size of the CZ, the “differential term” is

indeed a small parameter, and ξ0 will not differ from ξTWB significantly. However, if we

consider a short-wavelength perturbation to this solution, the “differential term” can become

comparable. The linearized equation for a perturbation ξ1 = ξ − ξ0 is

δ∆?[ξ0; ξ1] + ξ1
∂A

∂ξ

∣∣∣∣
ξ=ξ0

= 0, (5.3)
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where δ∆?[ξ0; ξ1] is the functional derivative of ∆? with respect to ξ1, evaluated at ξ0.

Let ξ1 be a local perturbation of the form exp(ik · x), so that ∇ξ1 ∼ ikξ1 and

∇2ξ1 ∼ −k2ξ1. By keeping only terms with at least one power of k, the linearized

differential operator becomes

δ∆?[ξ0; ξ1] ≈
χ′2k2

ρλ2
ξ1 − ik ·∇

(
χ′2

ρλ2

)
ξ1. (5.4)

Equations (5.3) and (5.4) give a local dispersion relation,

k2 + ik ·∇ ln

(
ρλ2

χ′2

)
≈
χ′2|∇ξ|2A′

ρv2
p

≡ K2. (5.5)

We note that K is real, as in the hydrodynamic limit with strong rotation, the sign of A′ is

given by the change in angular momentum as a function of cylindrical radius, and so A′ ≥ 0

for solar-like rotation (ie, fast equator and slow poles).

We identify two limiting cases of this relation:

k2 ≈ K2, if
∣∣∣∣∇ ln

(
ρλ2

χ′2

)∣∣∣∣� K, (5.6)

ik ·∇ ln

(
ρλ2

χ′2

)
≈ K2, if

∣∣∣∣∇ ln

(
ρλ2

χ′2

)∣∣∣∣� K. (5.7)

Let us evaluate K2 for parameters relevant to the solar CZ. To obtain A′, we note that the

stream surfaces are nearly cylindrical (ξ ≈ ξ (λ)), and differentiate A = 0 with respect to ξ

at constant ρ:

(
∂A

∂ξ

)∣∣∣∣
ρ

=
∂A

∂ξ
+
∂A

∂λ

∂λ

∂ξ
= 0

=⇒ A′ ≈ −∂A
∂λ

dλ

dξ
= ρ

dλ

dξ

Ł2′

λ3
≈ ρ

λ3

(
dλ

dξ

)2
d

dλ

(
λ4Ω2

)
.
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Then K2 is given by

K2 ≈ 1

v2
p

1

λ3

d

dλ

(
λ4Ω2

)
. (5.8)

In the Sun,K2 > 0, and (in the regions away from the surface and rotation axis) the first limit

(equation (5.6)) is applicable. Thus, in the bulk of the CZ, deviations from TWB take the

form of sinusoidal perturbations around ξ0, with a wavelength that is inversely proportional

to the density, k−1 ∼ K−1 ∝ |vp| ∝ ρ−1. Equation (5.8) suggests an interpretation of these

perturbations as the epicyclic motion of a fluid element, traced out in space via advection by

the poloidal flow.

Numerically, we first solve equation (5.2) for the smooth TWB solution in a small

section of the CZ, then add a perturbation to the gradient on the upper boundary. Figure 5.1

shows the results of this procedure for three different sections of the CZ, with increasing

depths from left to right, demonstrating that the wavelength of the perturbations decreases

consistent with equation (5.8). Because the wavelength of these perturbations is small

(∼ 0.001R� at r = 0.9R�), any significant deviation from the smooth solution in the CZ

would result in large-amplitude, oscillatory gradients in the rotation. Even if these structures

could be resolved by observations, they are likely to be suppressed (eg, due to turbulent

viscosity from convective motions). Thus, in the bulk of the CZ, we expect to see the smooth

TWB solution.
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Figure 5.1: Short wavelength epicyclic oscillations around the smooth TWB solution
in the CZ. A perturbation to the gradient is applied to the upper boundary, and nonreflecting
boundary conditions (see Section 3.2.2) are applied to the sides and bottom. The figures
display isorotation contours in a small section at 30◦ above the equator at decreasing radii
from left to right: r/R� = 0.95, 0.9, 0.8. Note the size of the domain; the perturbations
have a short wavelength, consistent with equation (5.8).

5.3 Equilibrium NSSL

Near the surface, the “differential term” of the PDE (5.1) is no longer subdominant, quali-

tatively changing the smooth solution ξTWB (equation (5.2)). Hydrostatic balance suggests

that the density decreases to zero as ρ(r) ∝ (R� − r)
1

γ−1 . Hence,∇ ln ρ diverges radially

and K2 → 0, so we are in the second limit (equation (5.7)). The dominant balance is now

given by

∂ξ

∂r
− K2

d
dr

ln ρ
ξ1 ≈ 0. (5.9)

Thus, ∂ξ/∂r → 0, so the cylindrical stream surfaces in the CZ become oriented radially

as they approach the surface. As angular momentum is constant along stream surfaces, this

corresponds to a slowing of the rotation at the surface, as seen in Figure 5.2. This transition
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occurs when the density scale height, |∇ ln ρ|−1, becomes comparable to the wavelength

given by equation (5.6), which occurs in the outer ∼ 2% the solar surface.

While the effects of this transition are qualitatively similar to the near surface shear layer

in the Sun, the location is confined much closer to the surface, so hydrodynamic equilibrium

is suggestive but insufficient as an explanation for the NSSL.

0.5 0.6 0.7 0.8 0.9 1.0

r/R�

300

350

400

450

Ω
/2
π

(n
H

z)

75◦

60◦

45◦

30◦
15◦

0.5 0.6 0.7 0.8 0.9 1.0

r/R�

300

350

400

450

Ω
/2
π

(n
H

z)

75◦

60◦

45◦

30◦
15◦

Figure 5.2: The inclusion of a poloidal flow results in a qualitative NSSL. Left: Rotation
as a function of radius for several latitudes, as obtained by helioseismology (data from [55]).
Dashed lines at 0.65R�, 0.75R�, and 0.95R� provide approximate divisions between the
radiative interior, tachocline, CZ, and NSSL. Right: The same plot for our hydrodynamic
Grad-Shafranov model, with ρ = 1 kg m−3 and vp = 20 m s−1 at r = 0.99R�. The profile
shows a decrease in rotation near the surface that is qualitatively similar to the NSSL in
the Sun, albeit occurring in a region that is a factor of ∼ 3 smaller. One notable feature
missing from our profile is the transition to uniform rotation at the tachocline. However,
there are two reasons to believe that magnetic effects could become important at this layer
and below: poloidal flows become weaker as the convective driving is suppressed in these
stably stratified regions, and the effects of a putative interior fossil field could enter the
equilibrium at lowest order (see Chapter 6).

5.4 Discussion

In this chapter, we allowed for a weak poloidal flow and considered its effects on the

equilibrium profile given by the hydrodynamic limit of the G–S equation (for parameters

relevant to the solar regime).
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In the convection zone, perturbations around this smooth solution appear with a wave-

length inversely proportional to the density. These epicyclic oscillations are much shorter

than the length scale of the background solution (∼ 0.01R� at r ∼ 0.97R�, decreasing to

∼ 0.001R� at r ∼ 0.9R�). Thus, the addition of a solar-relevant poloidal flow does not

significantly change the equilibrium profile in the bulk of the convection zone, suggesting

that the equilibrium in this region is stiff to perturbations by the boundary. However, while

the solution in the bulk of the CZ was relatively unchanged, a decrease in the rotation

appears within ∼ 2% of the solar surface, reminiscent of the near surface shear layer, albeit

distinctly smaller.

In the next chapter, we investigate the effects of including a magnetic field, and its

putative relationship with the Tachocline. In contrast to flow velocities that decrease

with depth, magnetic fields have an increasing effect on the equilibrium profile. Indeed,

magnetism has been suggested as essential to understanding the tachocline and radiative

interior [39, 84, 85, 104], and cyclic variations in the mean flows are likely intertwined with

the solar magnetic cycle [97, 79, 12]. In addition, surface measurements of poloidal field

and flow indicate the possibility of an Alfvénic transition layer at this depth, which could

lead to steep gradients qualitatively similar to a tachocline.

61



Chapter 6

The Tachocline

Everyone forgets Icarus also flew.

—– Jack Gilbert, Refusing Heaven

In this chapter, we include both toroidal and poloidal fields and flows, studying the full

G–S equation for solar-relevant parameters. In Section 6.3, we present a global solution that

(smoothly) crosses the Alfvén surface and associated hyperbolic layer. While the global

solutions leave these layers unresolved, we justify these smooth solutions using a 1D linear

analysis (Section 6.4.1). Moreover, by iteratively zooming in on the transition, we obtain

resolved local equilibria consistent with the smooth global solutions. After exploring the

space of smooth equilibria (Section 6.5), we then consider the interaction between the short

wavelength oscillations from Chapter 5 and the Alfvén surface (Section 6.6). The smooth

equilibria appear to not be robust to perturbations, opening the possibility for a “weak

tachocline hypothesis”, discussed at the end of this chapter (Section 6.7).
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6.1 Characteristics of the Tachocline

6.1.1 Basic properties

The primary revelation of cylindrical helioseismology (see Chapter 1 Section 1.4.2) is

arguably the sharp radial gradient in rotation at the base of the Convection Zone. This

transition is known as the Tachocline, and the reasons for its narrowness remain enigmatic.

The observation of such a region sparked renewed interest in Babcock–Leighton models

of the solar cycle, which require a source of internal shear to amplify toroidal fields from

poloidal fields via the ω-effect [4]. The precise nature of the rotational coupling across this

layer is also important for stellar spin-down models, and the circulation patterns induced

by this region are likewise of great interest to models of compositional mixing in the Sun.

However, these models typically enforce the existence of such a transition layer, eg, by a

prescribed rotation profile [24, 18] or a particular choice of boundary conditions [66]. There

are still many open questions: Why is the transition so narrow? How does the interior

“decouple” itself from the outer layers, so as to rotate essentially uniformly? And if the

interior is so decoupled, why is it rotating at nearly the current mean solar rate, instead of

∼10× faster (as it was when the Sun was formed)?

Spiegel [89] was the one to coin the term “tachocline”. He argued that the stable

stratification and strong radial shear in this transition region would result in anisotropic

turbulence, which would act as a strong horizontal viscosity, thereby homogenizing the

rotation. However, there is no agreement on what sort of instabilities could drive this

putative turbulence. Moreover, the nature of horizontal turbulence in such systems may

drive them away from uniform rotation, instead mixing potential vorticity and acting in an

“anti-frictional” way [64]. And even if such a preferential horizontal mixing were to provide

such an anisotropic friction, it still leaves unanswered the question of why there is nearly

no radial shear in the Radiative Interior; if radial motions are suppressed, how does the CZ
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communicate its average rotation to the radially decoupled interior? Several studies have

invoked gravity waves as a mechanism for transporting angular momentum to the interior

[94], but this has likewise been shown to act in an “anti-frictional” manner [81].

6.1.2 Gough and McIntyre model and subsequent simulations

Motivated by these issues with a purely hydrodynamical description, Gough & McIntyre

[39] claimed that there must be a large scale magnetic field in the solar interior. They

performed a boundary layer analysis by considering the competition between an outwardly

diffusing poloidal field in the Radiative Interior and a downward poloidal flow from the

Convection Zone. Then, by comparing with the thickness of the Tachocline, they concluded

that a∼ 10−4 T field could hold the interior in uniform rotation. This amplitude is consistent

with the idea of a “fossil field”, ie, the concentration of a background magnetic field during

the Sun’s initial formation.

However, subsequent simulations of the Gough & McIntyre model of the Tachocline

(GM98) have found that such a delicate balance between field and flow is difficult to obtain

in practice [105, 104, 3]. In general, simulations find that the interior poloidal field quickly

diffuses into the Convection Zone. Then, by Ferraro’s theorem of isorotation [28], which

states that rotation is uniform along a poloidal field line, the differential rotation of the CZ is

efficiently communicated to the interior. The question then becomes: how could the interior

field be contained against such outward diffusion?

Acevedo-Arreguin et al. [3] described the first global simulation of the GM98 model,

proposing an explanation for the fact that previous simulations of this model could not

contain this interior field. In particular, they considered an axisymmetric and steady-state

model, with parameterized diffusion coefficients as a function of radius. They drove differ-

ential rotation in the upper CZ, maintaining the counterclockwise meridional circulation
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via gyroscopic pumping, while the interior field was maintained by currents in the deep

interior. They claimed that previous simulations failed because of an unrealistically large

Prandtl number Pr, the ratio of momentum diffusivity and thermal diffusivity. This caused

the downwelling meridional circulation to be viscously damped at the bottom of the CZ,

thereby being unable to penetrate into the interior to confine the field. More precisely,

the dimensionless parameter σ ≡
√

Pr
(
N/Ω�

)
, which describes the relative importance of

viscosity in the radiation zone, is σ � 1 in most simulations, despite the value being σ < 1

in and around the Tachocline. Thus, Acevedo-Arreguin et al. reduced Pr as low as possible,

and then artificially reduced N/Ω� until σ < 1, indeed finding a GM98-like solution. In

their simulations, the diffusivities are larger (and the rotation rate is smaller) than solar

values, resulting in a tachocline that is much thicker than observations. However, their study

of variations of these parameters within the computationally accessible regime suggests that

the Tachocline should be appropriately narrow for solar parameters.

Comparing with our G–S model, one major difference is in the choice of heat transport.

While these models balance entropy generation via adiabatic compression against thermal

diffusion, both of these effects are outside the scope of the G–S equation. We are essentially

considering purely advective transport, such that entropy is constant along flux/stream

surfaces. Moreover, the appearance of GM98-like solutions seems to require a careful

choice of radial diffusivity profiles, such that the smaller laminar magnetic diffusivity must

extend slightly into the base of the Convection Zone, allowing for what is known as “pre-

confinement”. Although, as the magnitude of the diffusivities decreases towards solar-like

values, such pre-confinement may not be necessary [3]. In contrast, our model has no Prandtl

number and does not require carefully chosen diffusivity profiles (as both dissipations are

by definition zero). Thus, it could shed light on this low-diffusivity regime.
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6.2 Our “strong tachocline hypothesis”

Our strong tachocline hypothesis is that there exist solar-relevant equilibria that contain

sharp discontinuities (or large gradients) associated with these Alfvén, slow, and cusp

transitions, and that such features appear near the location of the Tachocline. The inclusion

of a toroidal flow into the magnetostatic G–S equation presents no particular numerical

difficulty; the resulting PDE remains elliptic everywhere. Likewise, including a toroidal

field into the hydrodynamic G–S equation does not introduce any transitions in the regime

we are considering (ie, subsonic flows). However, when both poloidal fields and flows are

included, the structure of the PDE can change dramatically. The relevant parameter is the

squared poloidal Alfvénic Mach number:

M2
AP ≡ ρv2

p/B
2
p = χ′2/ρψ′2. (6.1)

Recall that the type of a PDE (elliptic, hyperbolic, or parabolic) is characterized by its

discriminant. In our case, the discriminant can be written as

∆ =

(
1−M2

AP

)2
(

1− γp+B2

γp
M2

AP

)

B2
p

γp
M4

AP −
B2

γp
M2

AP + 1

. (6.2)

The discriminant changes sign when M2
AP passes through the critical values M2

c , M2
s , or

M2
f , corresponding to when the poloidal flow (projected along the field lines) matches the

cusp, slow, and fast speeds, respectively (see Figure 6.1). It becomes zero (without changing

sign) at M2
AP = 1 (the Alfvén point). In order of increasing poloidal flow: the PDE is

elliptic (∆ > 0) for 0 ≤ M2
AP < M2

c , hyperbolic (∆ < 0) for M2
c < M2

AP < M2
s , elliptic

for M2
s < M2

AP < 1 and 1 < M2
AP < M2

f , and again hyperbolic for M2
f < M2

AP . At the

Alfvén point (M2
AP = 1), the PDE becomes singular, reducing to an algebraic condition
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that must be satisfied at this surface, and an application of l’Hôpital’s rule gives a jump

condition that connects the solutions on either side. Although the order of these critical

points is always the same, the spacing between them can be quite different.

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payoff is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {ω2

S}, {ω2
A}, ω2

F ≡ ∞ for highly localized modes (Fig. 3), and the corresponding

0
ω2

Alfvén

Aω
2

fast

∞

slow

Sω
2

FIG. 3: Cluster spectra of the waves.

slow, Alfvén, and fast hyperbolic flow regimes delimited by critical values of the square of
the poloidal Alfvén Mach number (Fig. 4):

0
M

∞MfMc Ms 1

Alfvén fastslow

FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (Γ = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q(ψ) is
a monotonically increasing function.
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4
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [36]). The relevant transitions for solar equilibria are the Alfvén surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
radius. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvén surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvén surface.

We adopt an ordering relevant to the solar regime, viz, β ≡ γp/B2 ∼ B/Bp ∼ O(δ−1),

where δ is a small parameter of order 10−4 (see Table 4.1.1 in Chapter 4 Section 4.1.1). In

this limit, the critical values are given by:

M2
c =

γp

γp+B2
≈ 1− β−1 ∼ 1−O(δ) , (6.3)

M2
s =

1

2

γp+B2

B2
p

(
1−

√
1− 4γpB2

p

(γp+B2)2

)
≈M2

c

(
1 + β−1

p

)
∼M2

c +O
(
δ3
)
, (6.4)

M2
f =

1

2

γp+B2

B2
p

(
1 +

√
1− 4γpB2

p

(γp+B2)2

)
≈ β−2

p ∼ O
(
δ−3
)
, (6.5)

where βp ≡ γp/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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the mean poloidal field and flow at the surface and extrapolate downwards along the (nearly

axial) flux surfaces that thread the CZ (see Figure 6.2). This gives a value of M2
AP ∼ 200 at

the surface, decreasing inversely proportional to density, suggesting that the critical layers at

M2
AP . 1 appear at around ∼0.7R�, suggestively close to the location of the Tachocline.

At the M2
AP = 1 surface, the poloidal projection of propagating Alfvén waves exactly

matches the speed of the poloidal flow, and a standing Alfvén shock could appear, producing

discontinuities in ∇ξ, B, and v. These are dissipationless transverse shocks, physically

corresponding to an instantaneous rotation of the field and flow about the direction normal

to the shock (recall the equation remains elliptic on either side of this surface). Dissipative

shocks associated with the hyperbolic layer below the Alfvén surface could also appear.
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I. INTRODUCTION

Helioseismology has revealed a rich structure to the internal rotation profile of the sun [? ]. Notably, while the radiative

interior (RI) rotates uniformly, the transition to di↵erential rotation in the convection zone (CZ) occurs in a narrow

shear layer known as the tachocline. In addition, rotation decreases in the outer 5%, forming another region known

as the near surface shear layer (NSSL). A fundamental goal of solar modeling is to understand the reasons for this

rotation profile, and the implications for stellar models. To help answer these questions, we propose using the framework

of Grad-Shafranov theory to study solar-like equilibrium states. These equilibria can be used as initial conditions for

numerical simulations, and can help determine which features can be described by equilibrium, and which are necessarily

dynamical in origin. In this paper, we focus on the CZ and NSSL in the fluid limit.

In the bulk of the CZ, the isorotation contours are tipped radially. This deviation from Taylor-Proudman balance (i.e. a

cylindrical rotation profile) requires a source of azimuthal vorticity, and the commonly posited source for the case of

the solar CZ is baroclinic forcing, requiring only 10K warmer poles for the observed tilting of the rotation contours

(although this cannot be directly measured). In an attempt to find closed form analytic solutions, Balbus found strikingly

good agreement with observations by assuming entropy to be constant along isorotation contours, and posited possible

mechanisms for this alignment.

The NSSL likewise has had theoretical and numerical arguments suggested for its origin. For instance, mixing-length

theory suggests that the Rossby number becomes � 1 in this region, allowing for convective mixing of angular momentum

to cause the observed slowing of rotation, and numerical simulations have recovered similar profiles.

In section II, we review the equations describing stationary axisymmetric ideal MHD flows and the fluid dynamic limit.

In Section III, we invoke approximations relevant to the solar regime and show how Balbus’ ansatz is naturally included

in the Grad-Shafranov framework. Our finite element numerical method is described in section IV, and results of solar-like

profiles are presented in Section V, including e↵ects due to the surface that are qualitatively similar to the NSSL. In

Section VI, we discuss potential applications, limitations, and extensions of the model.

II. GENERALIZED GRAD-SHAFRANOV EQUATION WITH FLOWS

Our starting point is the solution to stationary, axisymmetric, ideal MHD, first given by ? ]

r̄ · (⇢
¯
v) = 0, r̄ ·

¯
B = 0 (1)

⇢
¯
v · r̄

¯
v + r̄p + ⇢r̄� = (r̄ ⇥

¯
B) ⇥

¯
B (2)

r̄ ⇥ (
¯
B ⇥

¯
v) = 0 (3)

¯
v · r̄� = 0, � ⌘ ln (S) ⌘ ln (p/⇢�) (4)

where ⇢,
¯
v,

¯
B, p, and � are the density, fluid velocity, magnetic field, pressure, and entropy. The external potential

denoted � is a function of space, and will be considered gravitational. We will use (r, ✓, �) for spherical and (�, z, �)

for cylindrical coordinate systems, with � = r sin (✓), z = r cos (✓), and � is the direction of symmetry about the

z-axis.

Here we restate the full set of equations describing the generalized Grad-Shafranov equation, using the notation in ??,

but assuming rotational symmetry instead of translational, and allowing for the external potential �.
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Figure 6.2: The extrapolated position of the Alfvén surface occurs suggestively close to
the base of the Convection Zone. Using the density and pressure profiles of the standard
solar model [44], we plot the entropy as a function of radius (blue curve). Notice that the
entropy increases as a function of radius until the onset of convection (around 70% of the
solar radius), at which point it is essentially flat. This is essentially the same location as
the Tachocline, where the rotation profile changes from uniform to differential. Based on
measurements of the solar surface, we assume a surface flow of 15 m s−1 and 10−3 T at
a density of 1 kg m−3. Under the assumption that the flux/stream functions extend from
the solar surface to the base of the Convection Zone, M2

AP is inversely proportional to the
density throughout this region (red curve). This resulting putative profile suggests that
M2

AP ∼ 1 also occurs around the location of the Tachocline.
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6.2.1 The roots of the Bernoulli equation

It is not only the PDE (2.18) that must navigate transitions; the algebraic Bernoulli equa-

tion (2.17) must choose between different roots. Indeed, as illustrated in Figure 6.3, the

derivative of the Bernoulli equation with respect to density has the same sign in both the

depths corresponding to the Convection Zone and Radiative Interior (the second and fourth

roots of the Bernoulli equation, respectively). However, there should be a brief region in

between, just below the Alfvén surface, where this derivative is of the opposite sign.
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As illustrated in Figure 6.4, the derivative of the Bernoulli equation with respect to

density has the same sign in both the depths corresponding to the convection zone and

radiative interior (the second and fourth roots of the Bernoulli equation, respectively).

However, there should be a brief region in between, just below the Alfvèn surface, where

this derivative is of the opposite sign.

In an attempt to verify that this was the case in our global simulations, we constructed

a code that automatically zooms in on the Alfvèn surface, and plot this derivative (see

Figure 6.5). Indeed, we find that the derivative in this region begins to approach zero

(indicating the presence of the transition). However, despite our best efforts (including

altering the parameters to allow for a wider transition), we were unable to see derivatives of

the opposite sign before running into issues with machine precision. Thus, instead, we now

perform an analytic treatment that justifies the existence of a smooth solution that crosses

these transitions.
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Figure 6.5). Indeed, we find that the derivative in this region begins to approach zero

(indicating the presence of the transition). However, despite our best efforts (including

altering the parameters to allow for a wider transition), we were unable to see derivatives of

the opposite sign before running into issues with machine precision. Thus, instead, we now

perform an analytic treatment that justifies the existence of a smooth solution that crosses

these transitions.

⇢A

convection zone

tachocline

radiative interior

70

As illustrated in Figure 6.4, the derivative of the Bernoulli equation with respect to

density has the same sign in both the depths corresponding to the convection zone and

radiative interior (the second and fourth roots of the Bernoulli equation, respectively).

However, there should be a brief region in between, just below the Alfvèn surface, where
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Figure 6.3: Schematic of smoothly switching between different solutions for the den-
sity in the solar relevant regime.
Here, we consider moving along a single flux/stream surface, starting near the top of the
Convection Zone (upper left) and ending in the Radiative Interior (lower right). The curved
lines represent the terms in the Bernoulli equation (2.17) that depend on the density, plotted
as a function of density. The remaining terms (H(ξ) and the gravitational potential Φ) are
represented by the horizontal lines, and have a value that decreases with depth. Solutions
for the Bernoulli equation are given by the intersection of these two curves, and the desired
solution is denoted by the red dot.
In general, the Bernoulli equation has either 0, 2 or 4 roots. The smallest root does not occur
in our domain, and is indistinguishable from zero in this schematic. The second root is the
appropriate choice for the Convection Zone.
As the solution approaches the Alfvén density for this flux/stream surface
(ρ→ ρA ≡ χ′2/ψ′2, ie, M2

AP → 1), it approaches a “crevasse” (second row, first frame),
such that the solution seemingly cannot cross to the other side. However, the width of this
crevasse is proportional to the difference between the cylindrical radius of this flux/stream
surface and its associated Alfvén radius (λA ≡

√
−ψ′L/χ′F ). Thus, if the flux/stream

surface passes through λ = λA, then the second and third solutions coincide at ρ = ρA
(second row, second frame), allowing the solution for the density to smoothly transition
between them (second row, third frame).
However, the saga of the little red dot is not yet over; it must still find a way out of this
crevasse. The horizontal line will continue to decrease, apparently damning our circular
friend to the depths of the Alfvénic crevasse. But as the crevasse widens, the barrier to the
right is lowered, providing salvation and allowing the solution to smoothly break through
to the other side, the fourth root. A more rigorous translation of this story is given in
Section 6.4.1.
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6.3 Seemingly smooth transitions

We now consider global simulations that contain the aforementioned transitions. In contrast

to our strong tachocline hypothesis, in Figure 6.4, we find solar-like equilibria that smoothly

cross the Alfvén surface and narrow hyperbolic layer. However, because these transitions

occur in a very narrow region (∼ 10−6R�), the resolution required to resolve these layers in

a global equilibrium is prohibitive.
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The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2
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FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In

this limit, the critical values are given by:
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.
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where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2

S}, {!2
A}, !2

F ⌘ � for highly localized modes (Fig. 3), and the corresponding
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FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In

this limit, the critical values are given by:
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where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In

this limit, the critical values are given by:
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where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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Figure 6.4: Example of a smooth equilibrium with a “simple” tachocline. Left: We
choose the rotation rate to match the solar rotation data from Howe et al. [55] at r = 0.95R�.
The parameters controlling the density were chosen such that ρ = 1 kg m−3 at r = R�
and ρ = 200 kg m−3 at r = 0.7R�, a good approximation to the adiabatic profile in the
Convection Zone. The poloidal flow is taken to be 20 m s−1 at r = R�, approximately equal
to the observed poleward poloidal flow on the surface. The entropy gradient was chosen
to approximate the tilting of the rotation contours in the Convection Zone. We choose
constant ρA ≡ χ′2/ψ′2, so that the Alfvén surface (denoted by the green line) is essentially
spherical. Lastly, we choose the Alfvén radius λA ≡

√
−ψ′L/χ′F to be equal to the initial

cylindrical radius of that flux/stream surface (where it intersects the outer boundary). Thus,
the flux/stream surfaces are essentially equally spaced as they cross the Alfvén surface,
and do so at nearly the location they would be in hydrodynamic equilibrium. Notice that
the physical variables are smooth across the Alfvén surface, in contrast with our strong
tachocline hypothesis. However, the layers associated with the transitions are extremely
narrow (∼ 10−6R�), and are not possible to resolve in such a global simulation; all of the
gridpoints are either completely above or below this region. Right: Actual solar rotation
profile in black (data from [55]), and a profile obtained from the hydrodynamic G–S model
in white (see Figure 4.2).
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Indeed, it is not uncommon for transitions to be unresolved in global simulations of

the G–S equation. For example, Guazzotto et al. [42] left unresolved the small region of

hyperbolicity associated with the sonic transition in the tokamak-relevant regime. However,

Guazzotto & Hameiri [43] considered a linear 2D model of a two elliptic regions separated

by a hyperbolic layer, deriving an exact solution, indicating that treating such problems as

an elliptic boundary value problem is in fact well-posed, and can yield smooth solutions.

While this small unresolved hyperbolic region may indeed be smooth, it can give rise to

discontinuities elsewhere in the equilibrium solution. In fact, such a transition gives rise to

the possibility of tokamak equilibria with radial discontinuities in density and poloidal flow.

One particularly tantalizing suggestion is that this strong radial shear could suppress

turbulence and serve as an internal transport barrier [41]. This shear is very similar to our

desired tachocline result. However, there are a few key differences: the discontinuity studied

by Guazzotto & Hameiri is due to the sonic transition, which occurs at a lower velocity

in the tokamak-relevant regime; and it is precisely aligned with the flux/stream functions,

while our relevant transitions are crossed by the flow. Furthermore, it has been shown that

the sonic transition is eliminated in a kinetic treatment due to the effect of Landau damping

[15], which is not captured in an MHD model. In contrast, the Alfvén transition persists

even in the presence of kinetic effects [15, 57].

Similar to the approach taken by Guazzotto & Hameiri [43], we analyze simplified local

models of the transitions to determine if our observed smooth solutions in solar relevant

regime are indeed valid equilibria.
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6.4 Consistency of the smooth global solutions

6.4.1 1D model for the trans-Alfvénic density profile

We start by analyzing a 1D model representing a single flux/stream surface in order to

determine if the density is able to smoothly switch between the three relevant solutions to

the Bernoulli equation (see Section 6.2.1, Figure 6.3).

In brief, in the following analysis, we consider the behavior of a single flux/stream

surface as a function of depth (as in Figure 6.3). We first neglect the differential terms

in both the Bernoulli equation (2.17) and the PDE (2.18). We linearize about the Alfvén

surface and show analytically that smooth transitions to the third and fourth roots can indeed

occur.

We begin by neglecting the differential terms in the Bernoulli equation (2.17),

1

2

χ′2

ρ2

[(
L

λ
+
λχ′F

ψ′

)/(
ψ′2 −

χ′2

ρ

)]2
− 1

2

λ2F 2

ψ′2
+

γ

γ − 1
ργ−1eσ + Φ−H(ξ) = 0. (6.6)

We rewrite this equation in terms of dimensionless quantities as follows:

G
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= 0, (6.7)

73



where

ρA ≡
χ′2

ψ′2
, (6.8)

λ2
A ≡ −

ψ′L
χ′F

, (6.9)

Z ≡ LF

ψ′χ′
, (6.10)

Φ ≡ −G
r
. (6.11)

Likewise, neglecting the differential terms in the PDE (2.18) yields another algebraic

expression:

[(
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ρλ2F 2

2

)/(
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ρ

)
− 1

γ − 1
ργeσ + ρH

]′
= 0, (6.12)

which we also write in terms of dimensionless quantities:
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(6.13)

Notice that for both equations (6.7) and (6.13) to be satisfied at the Alfvén surface

(ρ→ ρA), then λ2 → λ2
A as well. As ρ is nearly spherical, this condition specifies a point in

the poloidal plane that a given flux/stream surface must pass through (if it is to cross the

Alfvén surface). This essentially “anchors” the flux/stream surface at a specific location
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on the Alfvén surface. We consider to the consequences of this anchoring in Section 6.5

(Figure 6.8).

Linear analysis of Alfvén transition

In this linearized regime, we now show that the solution smoothly crosses through all the

relevant roots. Precisely, we consider moving along a curve of constant ξ, and evaluate the

evolution of the density ρ and cylindrical radius λ as a function of spherical radius r. For

fixed ξ, equations (6.7) and (6.13) can be seen as

Bernoulli
(
r̃, ρ̃, λ̃2

)
= 0, (6.14)

PDE
(
ρ̃, λ̃2

)
= 0, (6.15)

where r̃ ≡ r/R�, ρ̃ ≡ ρ/ρA, and λ̃2 ≡ λ2/λ2
A.

To obtain the required slope of the flux/stream surface as it passes through the Alfvén

surface, we apply l’Hôpital’s rule to the algebraic part of the PDE (6.13):
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Substituting back into the algebraic part of the Bernoulli equation (6.7), we obtain a

second expression to be satisfied at the critical point:
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This yields an expression for the spherical radius at which the flux/stream surface crosses

the Alfvén surface,

r̃c = − G

R�Z

(
H

Z
− γSργ−1
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+

1

2

ρ2
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(
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)2

c

− 1

2

)−1

. (6.18)

To obtain the change in density with respect to spherical radius at the Alfvén surface,

we substitute into equation (6.7) a linear approximation of λ̃2 as a function of ρ̃:
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c
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= 0. (6.19)

We then differentiate with respect to r̃ and evaluate at the Alfvén point:
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obtaining
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We then substitute this additional linear approximation of ρ̃ as a function of r̃ into

equation (6.7):

Bernoulli
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(
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)

c

(
r̃ − r̃c

)
, 1 +

(
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dρ̃

dr̃

)

c

(
r̃ − r̃c

))
= O

(
(r̃ − r̃c)2

)
. (6.22)

Evaluating ∂Bernoulli/∂ρ̃ for these linearized parameters, we find that this derivative

indeed changes sign in a region just below the Alfvén point (see Figure 6.5 for vizualization).

In summary, this analysis suggests that smooth global solutions, despite not resolving the

transition layers, are consistent with local solutions that do.
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As illustrated in Figure 6.4, the derivative of the Bernoulli equation with respect to

density has the same sign in both the depths corresponding to the convection zone and

radiative interior (the second and fourth roots of the Bernoulli equation, respectively).

However, there should be a brief region in between, just below the Alfvèn surface, where

this derivative is of the opposite sign.

In an attempt to verify that this was the case in our global simulations, we constructed

a code that automatically zooms in on the Alfvèn surface, and plot this derivative (see

Figure 6.5). Indeed, we find that the derivative in this region begins to approach zero

(indicating the presence of the transition). However, despite our best efforts (including

altering the parameters to allow for a wider transition), we were unable to see derivatives of

the opposite sign before running into issues with machine precision. Thus, instead, we now

perform an analytic treatment that justifies the existence of a smooth solution that crosses

these transitions.
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Figure 6.5: For solar relevant parameters, all the relevant transitions occur in a very
narrow region. We plot ∂Bernoulli/∂ρ̃ for the linearized solution (equation (6.22)). In
particular, the intermediate solution to the Bernoulli equation (2.17) (characterized by
∂Bernoulli/∂ρ̃ < 0) is relevant for a narrow region (about 10−6R� wide) just below the
Alfvén surface at 0.7R�.

6.4.2 Resolving the transitions in 2D

To corroborate our result from the linear 1D analysis, we use the full set of (nonlinear, 2D)

equations (2.18) and (2.17). To this end, we construct a code that automatically zooms in

on the region containing the transitions. After many iterations, the resolution is sufficiently

high to resolve the layers individually. In Figure 6.6, we plot the derivative of the Bernoulli

equation with respect to density, for increasing resolution. The final plot sufficiently resolves

the region where this derivative changes sign. As the solutions remain smooth, the smooth

global solutions are indeed valid.
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Figure 6.6: Zooming in on the Alfvén surface confirms the validity of the smooth
global solutions. Our iterative solver automatically approximates the location of the Alfvén
surface, zooming in by a factor of 2 each iteration. We plot the derivative of the full Bernoulli
equation (2.17) for different resolutions. From the 1D linear analysis (Section 6.4.1), we
expect this derivative to briefly change sign just below the Alfvén surface. Indeed, we
find the same qualitative behavior for the fully nonlinear 2D PDE. Moreover, the solutions
remain smooth, justifying the use of global simulations, which are unable to resolve these
layers.

6.5 Perturbing the simple Alfvén surface

Having established that the smooth global solutions are indeed valid, we now further

investigate the range of possible smooth solutions. While we have the freedom to choose

the six flux/stream functions (Chapter 2 Section 2.3), our knowledge of the Sun constrains

some of their profiles. Specifically, the surface poloidal flow constrains χ, and the surface

rotation essentially constrains L. The density profile constrains the magnitude of both H and

σ, and the tilting of the contours in the Convection Zone constrains ∂σ/∂ξ. The arbitrary
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choice of labeling the flux/stream surfaces with ξ ≈ λ at the surface determines ∂H/∂ξ.

This leaves unconstrained two flux/stream functions, ψ and F . However, due to the complex

and nonlinear relationship between flux/stream functions and the physical variables, we find

it more intuitive to represent these degrees of freedom in terms of ρA(ξ) (equation (6.8)) and

λ2
A(ξ) (equation (6.9)). The former essentially determines the spherical radius of the Alfvén

surface, and the latter determines the cylindrical radius at which the flux/stream surfaces

will cross the Alfvén surface.

For the previously considered global solution (Figure 6.4), ρA was constant, resulting

in a nearly spherical Alfvén surface. However, there is evidence that the Tachocline is in

fact prolate [19, 25]. In Figure 6.7, we study the effect of changing the shape of the Alfvén

surface on the equilibrium profiles. While we find that such manipulations alter the position

of the toroidal field, it does not appreciably change the rotation profile.
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The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2
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F ⌘ � for highly localized modes (Fig. 3), and the corresponding
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slow, Alfvén, and fast hyperbolic flow regimes delimited by critical values of the square of
the poloidal Alfvén Mach number (Fig. 4):
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FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In

this limit, the critical values are given by:
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
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slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
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to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
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equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
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accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In

this limit, the critical values are given by:

M2
c =

�p

�p + B2
⇡ 1 � ��1 ⇠ 1 � O(�) (6.2)

M2
s =

1

2

�p + B2

B2
p

 
1 �

s
1 � 4�pB2

p

(�p + B2)2

!
⇡ M2

c

�
1 + ��1

p

�
⇠ M2

c + O
�
�3
�

(6.3)

M2
f =

1

2

�p + B2

B2
p

 
1 +

s
1 � 4�pB2

p

(�p + B2)2

!
⇡ ��2

p ⇠ O
�
��3
�
, (6.4)

where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
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to the gravitational pull of the compact object in the center. For the sake of the spectral
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a monotonically increasing function.

4

AP 

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2

S}, {!2
A}, !2

F ⌘ � for highly localized modes (Fig. 3), and the corresponding

0
ω2

Alfvén

Aω
2

fast

∞

slow

Sω
2

FIG. 3: Cluster spectra of the waves.

slow, Alfvén, and fast hyperbolic flow regimes delimited by critical values of the square of
the poloidal Alfvén Mach number (Fig. 4):

0
M

∞MfMc Ms 1

Alfvén fastslow

FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.

4

AP 

Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
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equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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Figure 6.7: The shape of the Alfvén surface does not appreciably change the rotation
profile. For a constant ratio between χ′ and ψ′, the Alfvén surface is nearly spherical (see
Figure 6.4 left). By allowing this ratio to vary with ξ, we can obtain an Alfvén surface
(green curves) with the observed [19, 25] prolateness of the Tachocline (left images). For
comparison, we also consider equilibria with oblate Alfvén surfaces (right images). Top
images display rotation profiles, and bottom images magnetic field profiles. The region of
high toroidal field appears to follow the shape of the Alfvén surface. For the rotation, while
there is a slight change in the profile (eg, the contours below the Alfvén surface at mid to low
latitudes are slightly more curved in the prolate case), there appear to be few fundamental
differences.

For the global solutions considered so far, λ2
A has been chosen so as to not significantly

perturb the poloidal flows from those that would be expected from a hydrodynamic treatment

(Figure 6.4). However, in many models of the Sun, the poleward surface flow is considered

to return equatorward at the base of the Convection Zone [24]. While recirculating flows
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are not compatible with a solar rotation profile under the assumptions of our model (see

discussion in Chapter 7 Section 7.2), we can nevertheless construct equilibria with poloidal

flows that are suggestive of such flows. In fact, as shown in Figure 6.8, such equilibria

display additional solar-like features in their rotation profiles.

81



-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

-4

-3

-2

-1

0

1

2

3

4

�

⌦⇥ 109(s�1)

z

prolate

oblate

convergent

divergent

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
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4

AP 

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2

S}, {!2
A}, !2

F ⌘ � for highly localized modes (Fig. 3), and the corresponding

0
ω2

Alfvén

Aω
2

fast

∞

slow

Sω
2

FIG. 3: Cluster spectra of the waves.

slow, Alfvén, and fast hyperbolic flow regimes delimited by critical values of the square of
the poloidal Alfvén Mach number (Fig. 4):

0
M

∞MfMc Ms 1

Alfvén fastslow

FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:

(A)

FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.

4

AP 

Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
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to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took

66

�

⌦⇥ 109(s�1)

Z

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
(tokamak) equilibrium solvers diverge in the hyperbolic regimes! We circumvent this problem
by calculating in elliptic regimes beyond the first hyperbolic one. Obviously, the payo� is
that we cannot approach the transonic transitions but have to infer what has happened
there from the changes in the dynamics found in the ‘transonic’ elliptic regimes.

The pleasing side of the transonic enigma is that the time-dependence of the linear waves
and the spatial dependence of the nonlinear stationary states are intimately related. This is
seen by comparing the wave spectra, which cluster at the slow, Alfvén, and fast continuum
frequencies {!2

S}, {!2
A}, !2

F ⌘ � for highly localized modes (Fig. 3), and the corresponding

0
ω2

Alfvén

Aω
2

fast

∞

slow

Sω
2

FIG. 3: Cluster spectra of the waves.

slow, Alfvén, and fast hyperbolic flow regimes delimited by critical values of the square of
the poloidal Alfvén Mach number (Fig. 4):

0
M

∞MfMc Ms 1

Alfvén fastslow

FIG. 4: Flow regimes of the stationary states.

By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took

66

�

⌦⇥ 109(s�1)

z

prolate

oblate

convergent

divergent

The transonic enigma mentioned above is due to the fact that the flows suddenly
change character from elliptic to hyperbolic at the transonic transitions. As a result, standard
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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FIG. 5: Equilibrium for tokamak (� = 0).

Note that the accretion disk equilibrium, in contrast to the tokamak, has the density
peaking on the outside to produce overall equilibrium on the flux / flow surfaces with respect
to the gravitational pull of the compact object in the center. For the sake of the spectral
calculations (Sec. 3), the two equilibria have been chosen such that the safety factor q( ) is
a monotonically increasing function.
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.
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With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),
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By means of the transonic equilibrium solver FINESSE (described in Ref. [12]) typical
equilibria in the first trans-slow elliptic regime have been computed for tokamak and
accretion disk (Figs. 5, and 6) for a representative choice of the flux function parameters:
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Figure 6.1: Schematic of transitions in the generalized G–S equation (image modified
from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.
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where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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from [35]). The relevant transitions for solar equilibria are the Alfvèn surface and both
slow surfaces (the cusp and slow transitions). The fast surface is well outside the solar
surface. When considering the G–S equation with translational invariance (such as in this
schematic) there is a region around the Alfvèn surface that is inaccessible to poloidal flows.
However, in the rotationally invariant case (such as ours), this “forbidden region” collapses
to zero width when a flux/stream surface is at a precise cylindrical radius, allowing for flows
to continuously cross between Es and Ef . Moreover, for solar relevant parameters, Hs is
incredibly narrow, and occurs very close to the Alfvèn surface.

We adopt an ordering relevant to the solar regime, viz, � ⌘ �p/B2 ⇠ B/Bp ⇠ O(��1),

where � is a small parameter of order 10�4 (see Table 4.2.1 in Chapter 4 Section 4.2.1). In
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M2
c =

�p

�p + B2
⇡ 1 � ��1 ⇠ 1 � O(�) (6.2)

M2
s =

1

2

�p + B2

B2
p

 
1 �

s
1 � 4�pB2

p

(�p + B2)2

!
⇡ M2

c

�
1 + ��1

p

�
⇠ M2

c + O
�
�3
�

(6.3)

M2
f =

1

2

�p + B2

B2
p

 
1 +

s
1 � 4�pB2

p

(�p + B2)2

!
⇡ ��2

p ⇠ O
�
��3
�
, (6.4)

where �p ⌘ �p/B2
p .

With this solar ordering, we notice that three of the four critical points appear very close

together (see Figure 6.1). To estimate where these critical layers appear in the Sun, we took
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Figure 6.8: Flux/stream surfaces reminiscent of recirculating flows at the base of the
CZ result in more solar-like rotation profiles. By maintaining a constant ratio between
ψ′ and χ′, we kept the Alfvén surface nearly spherical (as in Figure 6.4, left). While
maintaining the same rotation rate at r = 0.95R�, we adjusted the profile of the Alfvénic
radius λA as a function of ξ. The flux/stream surfaces (bottom images) are “tethered” to
their prescribed cylindrical radii λA at the Alfvén surface ρ = ρA. For the “convergent”
case (left images), flux/stream surfaces near to the rotation axis have an increased λA,
while flux/stream surfaces far from the rotation axis have decreased λA; they are forced to
“converge” towards each other as they approach the Alfvén surface. For the “divergent” case
(right images), the opposite holds. There is a clear qualitative change in the rotation profile
due to this manipulation (top images). In particular, the convergent case displays a profile
closer to that of the Sun (Figure 6.4, right): rotation contours at the mid to high latitudes
display more shear below the Alfvén surface, and the magnetic field displays two bands of
opposite sign.
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6.6 WKB analysis

Thus far, this chapter has tacitly assumed that the solutions are smooth, without the short

wavelength oscillations mentioned in Chapter 5. In this section, we show that, if such

oscillations are present in the solution, the linear analysis that was valid for the Convection

Zone (Section 5.2) breaks down as one approaches the Alfvén surface.

We first write the PDE (2.18) as:

(1− ρ̃)∇2ξ +Q1(ρ̃, ξ)|∇ξ|2 +Q2(ρ̃, ξ) = 0. (6.23)

Similar to the analysis in Section 5.2, let ξ0 be a smooth solution to equation (6.23), and

consider a perturbed solution ξ = ξ0 + ξ1. The linearized equation for ξ1 is approximately

(1− ρ̃)∇2ξ1 + 2Q1∇ξ0 ·∇ξ1 +

(
∂Q2

∂ξ

)∣∣∣∣
ξ0

ξ1 ≈ 0, (6.24)

where (∂Q2/∂ξ)|ξ0 is large and positive for ρ̃ < 1.

In Chapter 5, we discussed the relevant case for the bulk of the Convection Zone, where

the dominant balance given by the first and third terms of equation (6.24), resulting in short

wavelength oscillations. As one approaches the Alfvén surface (ρ̃→ 1),

(
∂Q2

∂ξ

)∣∣∣∣
ξ0

∝ 1

1− ρ̃ . (6.25)

Thus, the wavelength of the oscillatory perturbation decreases proportionally to 1− ρ̃.

Let x = 1− ρ̃. Because the density has nearly constant derivative with respect to radius

in the region around the Alfvén surface (Section 6.4.1), we treat ξ1 as a function of x,

83



arriving at the following approximate expression:

∂2ξ1

∂x2
+

¢
x2
ξ1 ≈ 0, (6.26)

where ¢ is a large positive constant. Applying the WKB approximation, we obtain

ξ1
∝∼
√
|x| exp(i ln |x|). (6.27)

As the oscillations decay in magnitude as one approaches the Alfvén surface, it might

appear that we are justified in dropping the second term in equation (6.24). However, care

must be taken; as the wavelength of these oscillations also become shorter, the magnitude of

the gradient scales as

|∇ξ1| ∝∼
1√
|x|
. (6.28)

Substituting the scaling (6.28) into equation (6.23), we see that the second term grows

as |x|−1 for x→ 0. This is faster than the first and third terms, which both grow as |x|−1/2,

breaking the Ansatz of dominant balance between these terms near the Alfvén surface.

Likewise, the term in the Bernoulli equation containing the spatial derivative of ξ is no

longer subdominant. Thus, if such short wavelength oscillations are to exist in the solution,

the analysis in Section 6.4 may not be valid; a more delicate treatment of the approach to

the Alfvén surface must be performed.

6.7 Discussion: a “weak tachocline hypothesis”

In contrast to our strong tachocline hypothesis, in the absence of oscillatory perturbations,

we found solutions that smoothly cross the Alfvén surface (Sections 6.3 and 6.5). However,
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while convenient from a mathematical and computational point of view, an absolute absence

of short wavelength oscillations is not particularly realistic.

Section 6.2 argues that the Alfvén surface and associated layer of hyperbolicity should

occur near the location of the Tachocline. Section 6.6 suggests that even the smallest

divergence from the smooth solution necessitates the incorporation of additional physics to

explain this region. One might then consider the “weak tachocline hypothesis”, positing

that localized instabilities associated with these transitions are related to the existence of the

Tachocline.

85



Chapter 7

Prospects

Despair, Hangover & Ecstasy

—– The Dø

7.1 Thesis summary

In this work, we have studied the internal structure of the Sun through the lens of axisym-

metric equilibrium MHD with flows. To this end, we developed a code that solves the

associated Lagrangian formulation, and applied it to solar-relevant regimes (Chapter 3). In

particular, we tested the validity of such an equilibrium description for the four broad regions

of the solar interior, namely, Near Surface Shear Layer, Convection Zone, Tachocline, and

Radiative Interior.

We find that a purely hydrodynamic equilibrium is sufficient to accurately replicate the

observed rotation in the Convection Zone (Chapter 4, Figure 4.2). Moreover, equilibria in this

limit exhibit poloidal flows that are aligned with angular momentum, a result corroborated

by high-resolution 3D simulations [75]. The inclusion of the poloidal flow implies a slowing
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of the rotation at the solar surface, a feature reminiscent of the Near Surface Shear Layer,

albeit smaller (Chapter 5, Figure 5.2).

As equilibrium flows are approximately inversely proportional to the density, the poloidal

field becomes relatively stronger, and the hydrodynamic limit no longer holds. By extrapo-

lating from the observed surface flows and fields, the poloidal flows are predicted to cross

the Alfvénic, slow, and cusp transitions at around 70% of the solar radius, suggestively close

to the onset of convection and the notoriously narrow Tachocline (Chapter 6). We find that

smooth equilibria crossing these transitions exist, suggesting that axisymmetric equilibrium

MHD is unable to produce a tachocline. However, a WKB analysis of perturbations around

such equilibria suggests that they may not be generic. Indeed, such transitions are frequently

associated with local instabilities and solutions with shocks, and we cannot rule out such

possibilities.

7.2 Caveats

One limitation of our model involves the topology of the meridional circulation. Near

the surface, poloidal flow becomes radial, which is at odds with reasonable boundary

conditions and perpendicular to the observed poleward flow (Figure 6.8, bottom images).

Likewise, axially-aligned subsurface flows thread the entire interior and do not exhibit the

expected recirculation at the Tachocline or equator. In fact, as angular momentum increases

with cylindrical radius everywhere, recirculating flows are incommensurate with solar-like

rotation within our model, as they are required to conserve angular momentum.

One possible resolution is that strong convection at the solar surface effectively “rewrites”

the flux/stream functions as the flow moves poleward. Likewise, the strongly subadiabatic

entropy gradient could serve a similar role at the base of the Convection Zone. The

description of such regions would necessarily be outside the scope of the Grad–Shafranov
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equilibrium formalism. However, one could envision a model with externally imposed

sources and sinks of momentum, magnetic flux, and entropy in these regions that redirect

the flow into a recirculating profile. The goal would then be to find physically motivated

prescriptions for these external forces that result in plausible solar profiles.

The equator poses a logically parallel (ie, also physically perpendicular) problem;

although the Sun exhibits a bipolar magnetic field (particularly during solar minimum, when

the equilibrium assumption is most likely to hold), solar flows appear to be predominantly

quadripolar. Hence, a global alignment of fields and flows is impossible within the G–S

formalism when the equator is within the domain.

7.3 Future directions

7.3.1 Initial conditions for nonlinear simulations

At the end of Chapter 6, we posit a “weak tachocline hypothesis”: localized instabilities

associated with the transitions near the Alfvén surface are related to the existence of

the Tachocline. To properly address this possibility, one would require fully nonlinear

3D simulations (such as the “millennium simulation” discussed in detail by Passos and

collaborators [72, 73, 74, 75]). The smooth trans-Alfvénic solutions obtained in Chapter 6

could serve as the initial conditions for such simulations. Seeded by small-amplitude

perturbations, the putative local instabilities associated with the transition would grow and

interact nonlinearly, and the effects of the resulting turbulence could be quantified. This

endeavor could provide insight into dynamic descriptions of the Tachocline, for example: Is

the turbulence horizontal, as suggested by Spiegel [90]? If so, does it serve to homogenize

the rotation in the interior, or does it do the opposite, as suggested by Rogers et al. [81]?

What is the relative importance of the gravity waves excited by solar convection?
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The solar-relevant equilibria presented in this work contain several transitions in a narrow

region surrounding the Alfvén surface, and suggest that these occur close to the base of

Convection Zone. In addition to the variations in the parameters considered in Figures 6.7

and 6.8, such simulations could assess the importance of the relative position of the onset of

convection with respect to these transitions [103].

7.3.2 Solar cycle

As torsional oscillations are synchronized with the solar cycle, their descriptions are clearly

intertwined [65]. While the timescale of the solar cycle (∼11 years) sits comfortably

above those of convective turbulence (.1 month), the relaxation time associated with the

axisymmetric MHD equilibria are notably longer. For example, the poloidal flow circulates

on a timescale comparable to the solar cycle, so the equilibration of angular momentum

must be at least as long. Nevertheless, it is not unreasonable (and potentially insightful, see

Chapter 2 Section 2.1) to ask: are torsional oscillations necessarily dynamic in nature, or

could they be described by a series of quasi-static solar equilibria?

7.3.3 Applications to other systems

Other stars

Potentially fruitful applications of this equilibrium framework extend beyond the Sun’s

gravitational influence. For example, spectropolarimetry offers information about the surface

magnetic fields of other stars, and the developing field of asteroseismology can probe their

interior structure [34, 31]. Such “multi-stellar” data could be used both to inform and

validate such an equilibrium model.
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Gas giants

The Juno mission [1] could provide another astrophysical dataset of particular interest. The

mission is currently collecting data about Jupiter’s magnetic and gravitational fields [5],

and there are many open questions about its interior structure [100]. For example: are

the zonal flows confined close to the surface, or do they extend deeper, forming columnar

structures as the Taylor–Proudman theorem would suggest? Much like the solar case, the

partial information obtained from observations would constrain the choice of flux/stream

functions, and solutions to the generalized G–S equation could provide plausible equilibrium

models of the Jovian interior.

Magnetoelectric confinement

Terrestrially, a particularly promising application is the modeling of magnetoelectric con-

finement experiments, such as rotating tori. These toroidal devices do not rely on rotational

transform of the magnetic field [56, 76]; instead, the vertical drift is averaged via a strong

poloidal flow [93]. In contrast to typical tokamak configurations, the poloidal Alfvénic

Mach number in these experiments can easily exceed unity [69], and an Alfvén surface

could appear. Through proper modeling of this transition, one might gain additional control

over the internal profile and transport properties in such devices.
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